|
import gradio as gr
|
|
import torch
|
|
from transformers import BertTokenizerFast, BertForTokenClassification
|
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
model_name = "AventIQ-AI/bert-named-entity-recognition"
|
|
model = BertForTokenClassification.from_pretrained(model_name).to(device)
|
|
tokenizer = BertTokenizerFast.from_pretrained(model_name)
|
|
|
|
|
|
label_list = ["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-MISC", "I-MISC"]
|
|
|
|
def predict_entities(text):
|
|
tokens = tokenizer(text, return_tensors="pt", truncation=True)
|
|
tokens = {key: val.to(device) for key, val in tokens.items()}
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**tokens)
|
|
|
|
logits = outputs.logits
|
|
predictions = torch.argmax(logits, dim=2)
|
|
|
|
tokens_list = tokenizer.convert_ids_to_tokens(tokens["input_ids"][0])
|
|
predicted_labels = [label_list[pred] for pred in predictions[0].cpu().numpy()]
|
|
|
|
final_tokens = []
|
|
final_labels = []
|
|
for token, label in zip(tokens_list, predicted_labels):
|
|
if token.startswith("##"):
|
|
final_tokens[-1] += token[2:]
|
|
else:
|
|
final_tokens.append(token)
|
|
final_labels.append(label)
|
|
|
|
table_rows = []
|
|
highlighted_text = text
|
|
for token, label in zip(final_tokens, final_labels):
|
|
if token not in ["[CLS]", "[SEP]", "O"]:
|
|
table_rows.append(f"<tr><td>{token}</td><td>{label}</td></tr>")
|
|
highlighted_text = highlighted_text.replace(token, f"<mark>{token}</mark>", 1)
|
|
|
|
table_data = "<table border='1' style='width:100%;'><tr><th>Entity</th><th>Label</th></tr>" + "".join(table_rows) + "</table>"
|
|
|
|
return f"<div style='font-size:16px; padding:10px;'><b>Highlighted Text:</b><br>{highlighted_text}<br><br><b>Entities Table:</b><br>{table_data}</div>"
|
|
|
|
|
|
iface = gr.Interface(
|
|
fn=predict_entities,
|
|
inputs=gr.Textbox(lines=5, placeholder="Enter text for entity recognition..."),
|
|
outputs=gr.HTML(),
|
|
title="BERT Named Entity Recognition",
|
|
description="Identify named entities (e.g., names, locations, organizations) in text using the BERT model fine-tuned by AventIQ. The results are displayed with highlighted entities and a structured table.",
|
|
live=True
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
iface.launch() |