File size: 5,550 Bytes
182c4ed
3776d99
 
 
 
73670cb
3776d99
a9a4e96
73670cb
 
a9a4e96
73670cb
 
a9a4e96
73670cb
 
 
 
a9a4e96
73670cb
 
 
 
3776d99
73670cb
3776d99
 
7e2ed99
3776d99
 
7e2ed99
3776d99
73670cb
 
 
 
 
 
 
 
 
3776d99
 
7e2ed99
3776d99
73670cb
 
 
3776d99
 
 
 
73670cb
 
 
 
 
a9a4e96
73670cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9a4e96
73670cb
 
 
7e2ed99
73670cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9a4e96
73670cb
 
 
 
 
 
 
 
 
a9a4e96
 
73670cb
a9a4e96
73670cb
a9a4e96
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import joblib
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler

# Load the data
data = pd.read_csv('BANKNIFTY_OPTION_CHAIN_data.csv')

# Preprocess the data
scaler = StandardScaler()
scaled_data = scaler.fit_transform(data[['open', 'high', 'low', 'close', 'volume', 'oi']])
data[['open', 'high', 'low', 'close', 'volume', 'oi']] = scaled_data

# Save the scaler for later use
joblib.dump(scaler, 'scaler.gz')

# Create a custom dataset class
class BankNiftyDataset(Dataset):
    def __init__(self, data, seq_len):
        self.data = data
        self.seq_len = seq_len

    def __len__(self):
        return len(self.data) - self.seq_len

    def __getitem__(self, idx):
        seq_data = self.data.iloc[idx:idx+self.seq_len]
        features = torch.tensor(seq_data[['open', 'high', 'low', 'close', 'volume', 'oi']].values, dtype=torch.float32)
        label = torch.tensor(seq_data['close'].iloc[-1], dtype=torch.float32)
        return features, label

# Define the LSTM-RNN model
class LSTMModel(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(LSTMModel, self).__init__()
        self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers=1, batch_first=True)
        self.fc = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        h0 = torch.zeros(1, x.size(0), self.lstm.hidden_size).to(x.device)
        c0 = torch.zeros(1, x.size(0), self.lstm.hidden_size).to(x.device)

        out, _ = self.lstm(x, (h0, c0))
        out = self.fc(out[:, -1, :])
        return out

# Initialize model, optimizer, and loss function
input_dim = 6
hidden_dim = 128
output_dim = 1
seq_len = 10

model = LSTMModel(input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()

# Split the data into training and validation sets
train_data, val_data = train_test_split(data, test_size=0.2, random_state=42)

train_dataset = BankNiftyDataset(train_data, seq_len)
val_dataset = BankNiftyDataset(val_data, seq_len)

train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)

# Function to train the model
def train_model():
    model.train()
    for batch in train_loader:
        features, label = batch
        optimizer.zero_grad()
        output = model(features)
        loss = criterion(output, label)
        loss.backward()
        optimizer.step()

# Function to evaluate the model on the validation set
def evaluate_model():
    model.eval()
    total_loss = 0
    with torch.no_grad():
        for batch in val_loader:
            features, label = batch
            output = model(features)
            loss = criterion(output, label)
            total_loss += loss.item()
    return total_loss / len(val_loader)

# Function to generate a strategy based on user input
def generate_strategy(open_price, high_price, low_price, close_price, volume, oi, sma_20, sma_50, rsi):
    model.eval()
    
    input_data = torch.tensor([[open_price, high_price, low_price, close_price, volume, oi]], dtype=torch.float32)
    
    with torch.no_grad():
        output = model(input_data)
        strategy = f"Predicted Close Price: {output.item():.2f}"
        return strategy

# Retrain the model every week or month (depending on schedule)
def retrain_model():
    # Load fresh data, scale it, and retrain the model
    new_data = pd.read_csv('BANKNIFTY_OPTION_CHAIN_data.csv')
    new_scaled_data = scaler.transform(new_data[['open', 'high', 'low', 'close', 'volume', 'oi']])
    new_data[['open', 'high', 'low', 'close', 'volume', 'oi']] = new_scaled_data

    new_train_data, new_val_data = train_test_split(new_data, test_size=0.2, random_state=42)
    new_train_dataset = BankNiftyDataset(new_train_data, seq_len)
    new_val_dataset = BankNiftyDataset(new_val_data, seq_len)

    new_train_loader = DataLoader(new_train_dataset, batch_size=32, shuffle=True)
    new_val_loader = DataLoader(new_val_dataset, batch_size=32, shuffle=False)

    # Training on new data
    model.train()
    for epoch in range(5):  # Train for 5 epochs
        for batch in new_train_loader:
            features, label = batch
            optimizer.zero_grad()
            output = model(features)
            loss = criterion(output, label)
            loss.backward()
            optimizer.step()

    # Save the retrained model
    torch.save(model.state_dict(), 'retrained_model.pth')

# Scheduler for automatic retraining
scheduler = BackgroundScheduler()
scheduler.add_job(retrain_model, 'interval', weeks=1)  # Schedule weekly retraining
scheduler.start()

# Gradio interface
inputs = [
    gr.components.Number(label="Open Price"),
    gr.components.Number(label="High Price"),
    gr.components.Number(label="Low Price"),
    gr.components.Number(label="Close Price"),
    gr.components.Number(label="Volume"),
    gr.components.Number(label="Open Interest"),
    gr.components.Number(label="SMA 20"),
    gr.components.Number(label="SMA 50"),
    gr.components.Number(label="RSI")
]

outputs = gr.components.Textbox(label="Predicted Strategy")

# Launch Gradio interface
gr.Interface(fn=generate_strategy, inputs=inputs, outputs=outputs, title="BankNifty Strategy Generator").launch()