Medical_Chatbot / app.py
Axcel1's picture
Update app.py
401ee04 verified
raw
history blame
16.6 kB
import gradio as gr
import os
import threading
import time
from pathlib import Path
from huggingface_hub import login
# Try to import llama-cpp-python, fallback to instructions if not available
try:
from llama_cpp import Llama
LLAMA_CPP_AVAILABLE = True
except ImportError:
LLAMA_CPP_AVAILABLE = False
print("llama-cpp-python not installed. Please install it with: pip install llama-cpp-python")
hf_token = os.environ.get("HF_TOKEN")
login(token = hf_token)
# Global variables for model
model = None
model_loaded = False
def find_gguf_file(directory="."):
"""Find GGUF files in the specified directory"""
gguf_files = []
for root, dirs, files in os.walk(directory):
for file in files:
if file.endswith('.gguf'):
gguf_files.append(os.path.join(root, file))
return gguf_files
def get_optimal_settings():
"""Get optimal CPU threads and GPU layers automatically"""
# Auto-detect CPU threads (use all available cores)
n_threads = os.cpu_count()
# Auto-detect GPU layers (try to use GPU if available)
n_gpu_layers = 0
try:
# Try to detect if CUDA is available
import subprocess
result = subprocess.run(['nvidia-smi'], capture_output=True, text=True)
if result.returncode == 0:
# NVIDIA GPU detected, use more layers
n_gpu_layers = 35 # Good default for Llama-3-8B
except:
# No GPU or CUDA not available
n_gpu_layers = 0
return n_threads, n_gpu_layers
def load_model_from_huggingface(repo_id, filename, n_ctx=2048):
"""Load the model from Hugging Face repository"""
global model, model_loaded
if not LLAMA_CPP_AVAILABLE:
return False, "llama-cpp-python not installed. Please install it with: pip install llama-cpp-python"
try:
print(f"Loading model from Hugging Face: {repo_id}/{filename}")
# Get optimal settings automatically
n_threads, n_gpu_layers = get_optimal_settings()
print(f"Auto-detected settings: {n_threads} CPU threads, {n_gpu_layers} GPU layers")
# Load model from Hugging Face with optimized settings
model = Llama.from_pretrained(
repo_id=repo_id,
filename=filename,
n_ctx=n_ctx, # Context window (configurable)
n_threads=n_threads, # CPU threads (auto-detected)
n_gpu_layers=n_gpu_layers, # Number of layers to offload to GPU (auto-detected)
verbose=False,
chat_format="chatml", # Use Llama-3 chat format
n_batch=512, # Batch size for prompt processing
use_mlock=True, # Keep model in memory
use_mmap=True, # Use memory mapping
)
model_loaded = True
print("Model loaded successfully!")
return True, f"✅ Model loaded successfully from {repo_id}/{filename}\n📊 Context: {n_ctx} tokens\n🖥️ CPU Threads: {n_threads}\n🎮 GPU Layers: {n_gpu_layers}"
except Exception as e:
model_loaded = False
error_msg = f"Error loading model: {str(e)}"
print(error_msg)
return False, f"❌ {error_msg}"
def load_model_from_gguf(gguf_path=None, n_ctx=2048):
"""Load the model from a local GGUF file with automatic optimization"""
global model, model_loaded
if not LLAMA_CPP_AVAILABLE:
return False, "llama-cpp-python not installed. Please install it with: pip install llama-cpp-python"
try:
# If no path provided, try to find GGUF files
if gguf_path is None:
gguf_files = find_gguf_file()
if not gguf_files:
return False, "No GGUF files found in the repository"
gguf_path = gguf_files[0] # Use the first one found
print(f"Found GGUF file: {gguf_path}")
# Check if file exists
if not os.path.exists(gguf_path):
return False, f"GGUF file not found: {gguf_path}"
print(f"Loading model from: {gguf_path}")
# Get optimal settings automatically
n_threads, n_gpu_layers = get_optimal_settings()
print(f"Auto-detected settings: {n_threads} CPU threads, {n_gpu_layers} GPU layers")
# Load model with optimized settings
model = Llama(
model_path=gguf_path,
n_ctx=n_ctx, # Context window (configurable)
n_threads=n_threads, # CPU threads (auto-detected)
n_gpu_layers=n_gpu_layers, # Number of layers to offload to GPU (auto-detected)
verbose=False,
chat_format="llama-3", # Use Llama-3 chat format
n_batch=512, # Batch size for prompt processing
use_mlock=True, # Keep model in memory
use_mmap=True, # Use memory mapping
)
model_loaded = True
print("Model loaded successfully!")
return True, f"✅ Model loaded successfully from {os.path.basename(gguf_path)}\n📊 Context: {n_ctx} tokens\n🖥️ CPU Threads: {n_threads}\n🎮 GPU Layers: {n_gpu_layers}"
except Exception as e:
model_loaded = False
error_msg = f"Error loading model: {str(e)}"
print(error_msg)
return False, f"❌ {error_msg}"
def generate_response_stream(message, history, max_tokens=512, temperature=0.7, top_p=0.9, repeat_penalty=1.1):
"""Generate response from the model with streaming"""
global model, model_loaded
if not model_loaded or model is None:
yield "Error: Model not loaded. Please load the model first."
return
try:
# Format the conversation history for Llama-3
conversation = []
# Add conversation history
for human, assistant in history:
conversation.append({"role": "user", "content": human})
if assistant: # Only add if assistant response exists
conversation.append({"role": "assistant", "content": assistant})
# Add current message
conversation.append({"role": "user", "content": message})
# Generate response with streaming
response = ""
stream = model.create_chat_completion(
messages=conversation,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
repeat_penalty=repeat_penalty,
stream=True,
stop=["<|eot_id|>", "<|end_of_text|>"]
)
for chunk in stream:
if chunk['choices'][0]['delta'].get('content'):
new_text = chunk['choices'][0]['delta']['content']
response += new_text
yield response
except Exception as e:
yield f"Error generating response: {str(e)}"
def chat_interface(message, history, max_tokens, temperature, top_p, repeat_penalty):
"""Main chat interface function"""
if not message.strip():
return history, ""
if not model_loaded:
history.append((message, "Please load the model first using the 'Load Model' button."))
return history, ""
# Add user message to history
history = history + [(message, "")]
# Generate response
for response in generate_response_stream(message, history[:-1], max_tokens, temperature, top_p, repeat_penalty):
history[-1] = (message, response)
yield history, ""
def clear_chat():
"""Clear the chat history"""
return [], ""
def load_model_interface(source_type, gguf_path, repo_id, filename, context_size):
"""Interface function to load model with configurable context size"""
if source_type == "Hugging Face":
success, message = load_model_from_huggingface(repo_id, filename, n_ctx=int(context_size))
else: # Local file
success, message = load_model_from_gguf(gguf_path, n_ctx=int(context_size))
return message
def get_available_gguf_files():
"""Get list of available GGUF files"""
gguf_files = find_gguf_file()
if not gguf_files:
return ["No GGUF files found"]
return [os.path.basename(f) for f in gguf_files]
# Create the Gradio interface
def create_interface():
# Get available GGUF files
gguf_files = find_gguf_file()
gguf_choices = [os.path.basename(f) for f in gguf_files] if gguf_files else ["No GGUF files found"]
with gr.Blocks(title="Llama-3-8B GGUF Chatbot", theme=gr.themes.Soft()) as demo:
gr.HTML("""
<h1 style="text-align: center; color: #2E86AB; margin-bottom: 30px;">
🦙 MMed-Llama-Alpaca GGUF Chatbot
</h1>
<p style="text-align: center; color: #666; margin-bottom: 30px;">
Chat with the MMed-Llama-Alpaca model (Q4_K_M quantized) for medical assistance!
</p>
""")
with gr.Row():
with gr.Column(scale=4):
# Chat interface
chatbot = gr.Chatbot(
height=500,
show_copy_button=True,
bubble_full_width=False,
show_label=False,
placeholder="Model not loaded. Please load the model first to start chatting."
)
with gr.Row():
msg = gr.Textbox(
placeholder="Type your message here...",
container=False,
scale=7,
show_label=False
)
submit_btn = gr.Button("Send", variant="primary", scale=1)
clear_btn = gr.Button("Clear", variant="secondary", scale=1)
with gr.Column(scale=1):
# Model loading section
gr.HTML("<h3>🔧 Model Control</h3>")
# Model source selection
source_type = gr.Radio(
choices=["Hugging Face", "Local File"],
value="Hugging Face",
label="Model Source",
info="Choose where to load the model from"
)
# Hugging Face settings
with gr.Group(visible=True) as hf_group:
gr.HTML("<h4>🤗 Hugging Face Settings</h4>")
repo_id = gr.Textbox(
value="Axcel1/MMed-llama-alpaca-Q4_K_M-GGUF",
label="Repository ID",
info="e.g., username/repo-name"
)
filename = gr.Textbox(
value="mmed-llama-alpaca-q4_k_m.gguf",
label="Filename",
info="GGUF filename in the repository"
)
# Local file settings
with gr.Group(visible=False) as local_group:
gr.HTML("<h4>📁 Local File Settings</h4>")
if gguf_files:
gguf_dropdown = gr.Dropdown(
choices=gguf_choices,
value=gguf_choices[0] if gguf_choices[0] != "No GGUF files found" else None,
label="Select GGUF File",
info="Choose which GGUF file to load"
)
else:
gguf_dropdown = gr.Textbox(
value="No GGUF files found in repository",
label="GGUF File",
interactive=False
)
load_btn = gr.Button("Load Model", variant="primary", size="lg")
model_status = gr.Textbox(
label="Status",
value="Model not loaded. Configure settings and click 'Load Model'.\n⚙️ Auto-optimized: CPU threads & GPU layers auto-detected\n📝 Context size can be configured in Generation Settings",
interactive=False,
max_lines=5
)
# Generation parameters
gr.HTML("<h3>⚙️ Generation Settings</h3>")
# Context size (now as a slider)
context_size = gr.Slider(
minimum=512,
maximum=8192,
value=2048,
step=256,
label="Context Size",
info="Token context window (requires model reload)"
)
max_tokens = gr.Slider(
minimum=50,
maximum=2048,
value=512,
step=50,
label="Max Tokens",
info="Maximum response length"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature",
info="Creativity (higher = more creative)"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.1,
label="Top-p",
info="Nucleus sampling"
)
repeat_penalty = gr.Slider(
minimum=1.0,
maximum=1.5,
value=1.1,
step=0.1,
label="Repeat Penalty",
info="Penalize repetition"
)
# Information section
gr.HTML("""
<h3>ℹ️ About</h3>
<p><strong>Format:</strong> GGUF (optimized)</p>
<p><strong>Backend:</strong> llama-cpp-python</p>
<p><strong>Features:</strong> CPU/GPU support, streaming</p>
<p><strong>Memory:</strong> Optimized usage</p>
<p><strong>Auto-Optimization:</strong> CPU threads & GPU layers detected automatically</p>
<p><strong>Sources:</strong> Hugging Face Hub or Local Files</p>
""")
if not LLAMA_CPP_AVAILABLE:
gr.HTML("""
<div style="background-color: #ffebee; padding: 10px; border-radius: 5px; margin-top: 10px;">
<p style="color: #c62828; margin: 0;"><strong>⚠️ Missing Dependency</strong></p>
<p style="color: #c62828; margin: 0; font-size: 0.9em;">
Install llama-cpp-python:<br>
<code>pip install llama-cpp-python</code>
</p>
</div>
""")
# Event handlers
def toggle_source_visibility(source_type):
if source_type == "Hugging Face":
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
source_type.change(
toggle_source_visibility,
inputs=source_type,
outputs=[hf_group, local_group]
)
load_btn.click(
load_model_interface,
inputs=[source_type, gguf_dropdown, repo_id, filename, context_size],
outputs=model_status
)
submit_btn.click(
chat_interface,
inputs=[msg, chatbot, max_tokens, temperature, top_p, repeat_penalty],
outputs=[chatbot, msg]
)
msg.submit(
chat_interface,
inputs=[msg, chatbot, max_tokens, temperature, top_p, repeat_penalty],
outputs=[chatbot, msg]
)
clear_btn.click(
clear_chat,
outputs=[chatbot, msg]
)
return demo
if __name__ == "__main__":
# Create and launch the interface
demo = create_interface()
# Launch with appropriate settings for Hugging Face Spaces
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=False,
show_error=True,
quiet=False
)