|
|
|
|
|
""" |
|
Data-Viewer tab ---- 美化·修正版 |
|
""" |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
import json, random |
|
from pathlib import Path |
|
import re |
|
|
|
|
|
BASE_DIR = Path(__file__).resolve().parent.parent |
|
DATA_VIEWER_FILE = BASE_DIR / "data" / "data_viewer.jsonl" |
|
|
|
|
|
def load_data_viewer_data() -> pd.DataFrame: |
|
records = [] |
|
if DATA_VIEWER_FILE.exists(): |
|
for line in DATA_VIEWER_FILE.read_text(encoding="utf-8").splitlines(): |
|
try: |
|
records.append(json.loads(line)) |
|
except json.JSONDecodeError: |
|
continue |
|
df = pd.DataFrame(records) |
|
req = ["model_name", "id", "prompt", "article", "overall_score", |
|
"comprehensiveness_score", "insight_score", |
|
"instruction_following_score", "readability_score"] |
|
if df.empty or not all(c in df.columns for c in req): |
|
|
|
return pd.DataFrame(columns=req) |
|
df["id"] = df["id"].astype(str) |
|
return df |
|
|
|
def make_user_task_markdown(item_id, prompt): |
|
return f"""### User Task 🎯 |
|
|
|
**Task ID:** {item_id} |
|
|
|
**Description:** {prompt}""" |
|
|
|
def make_article_markdown(article: str) -> str: |
|
if article and isinstance(article, str): |
|
|
|
processed_article = re.sub(r'\n{2,}', '\n\n', article) |
|
|
|
|
|
table_pattern = r'(\|[^\n]*\n(?:[\|\s\-:]+\n)?(?:\|[^\n]*\n)*)' |
|
tables = [] |
|
def replace_table(match): |
|
tables.append(match.group(1)) |
|
return f'__TABLE_PLACEHOLDER_{len(tables)-1}__' |
|
|
|
processed_article = re.sub(table_pattern, replace_table, processed_article) |
|
|
|
|
|
|
|
processed_article = re.sub(r'(?<!\n)\*\s*\*\*([^*]+?)\*\*:', r'\n\n* **\1**:', processed_article) |
|
|
|
|
|
processed_article = re.sub(r'\*\s*\*\*([^*]+?)\*\*:\s*([^*]*?)\s*\*\s*\*\*', r'* **\1**: \2\n * **', processed_article) |
|
|
|
|
|
processed_article = re.sub(r'(?<!\n)\[\d+[^\]]*\]\*\s*\*\*', r'\n\n* **', processed_article) |
|
|
|
|
|
|
|
lines = processed_article.split('\n') |
|
result_lines = [] |
|
|
|
for i, line in enumerate(lines): |
|
result_lines.append(line) |
|
|
|
if (i < len(lines) - 1 and |
|
line.strip() and |
|
lines[i + 1].strip() and |
|
not line.strip().startswith('*') and |
|
not lines[i + 1].strip().startswith('*') and |
|
not line.strip().startswith('#')): |
|
|
|
if i + 1 < len(lines) and lines[i + 1].strip(): |
|
result_lines.append('') |
|
|
|
processed_article = '\n'.join(result_lines) |
|
|
|
|
|
for i, table in enumerate(tables): |
|
processed_article = processed_article.replace(f'__TABLE_PLACEHOLDER_{i}__', table) |
|
|
|
else: |
|
processed_article = article if article is not None else "" |
|
|
|
return f"""### Generated Article 📖 |
|
|
|
{processed_article}""" |
|
|
|
def make_scores_html(overall, comprehensiveness, insight, instruction, readability): |
|
scores_data = [ |
|
("Overall Score", overall), |
|
("Comprehensiveness Score", comprehensiveness), |
|
("Insight Score", insight), |
|
("Instruction-Following Score", instruction), |
|
("Readability Score", readability) |
|
] |
|
|
|
html_items_str = "" |
|
for title, score in scores_data: |
|
score_value = score if score is not None else "N/A" |
|
html_items_str += f""" |
|
<div style="text-align: center; padding: 8px 5px; flex-grow: 1; flex-basis: 0;"> |
|
<h4 style="margin: 0 0 6px 0; font-size: 1.2em; color: #4a4a4a; font-weight: 600;">{title}</h4> |
|
<p style="margin: 0; font-size: 1.2em; font-weight: bold; color: #333;">{score_value}</p> |
|
</div> |
|
""" |
|
|
|
|
|
return f""" |
|
<div style="background:#fff; border:1px solid #e0e0e0; border-radius:8px; padding: 18px 15px; margin:18px 0; box-shadow:0 2px 4px rgba(0,0,0,.06);"> |
|
<div style="display: flex; justify-content: space-between; align-items: flex-start;"> |
|
{html_items_str} |
|
</div> |
|
</div>""" |
|
|
|
|
|
def create_data_viewer_tab(): |
|
with gr.Tab("🔍Data Viewer"): |
|
gr.HTML( |
|
""" |
|
<style> |
|
.card{background:#fff;border:1px solid #e0e0e0;border-radius:8px;padding:22px 24px;margin:18px 0;box-shadow:0 2px 4px rgba(0,0,0,.06);} |
|
.scrollable-sm{max-height:260px;overflow-y:auto;} |
|
.scrollable-lg{max-height:700px;overflow-y:auto;} /* 调整高度为分数区域腾出空间 */ |
|
.card p{color:#424242 !important;line-height:1.75;margin:0 0 14px 0;text-align:justify;} |
|
.card ul,.card ol{margin:12px 0 12px 24px;color:#424242 !important;} |
|
.card li{margin:4px 0;color:#424242 !important;} |
|
.card blockquote{border-left:4px solid #3498db;margin:18px 0;padding:14px 18px;background:#f8f9fa;font-style:italic;color:#555 !important;} |
|
.card pre{background:#f8f8f8;color:#333 !important;padding:18px;border-radius:6px;overflow-x:auto;border:1px solid #e0e0e0;} |
|
.card strong,.card b{font-weight:700 !important;} |
|
.card::-webkit-scrollbar{width:10px} |
|
.card::-webkit-scrollbar-track{background:#f5f5f5;border-radius:5px} |
|
.card::-webkit-scrollbar-thumb{background:#c0c0c0;border-radius:5px} |
|
.card::-webkit-scrollbar-thumb:hover{background:#a0a0a0} |
|
</style> |
|
""" |
|
) |
|
|
|
df = load_data_viewer_data() |
|
if df.empty: |
|
gr.Markdown("## ⚠️ 没有可用数据 \n请确认 `data/data_viewer.jsonl` 存在且字段齐全(包括所有分数)。") |
|
return |
|
|
|
models = sorted(df["model_name"].unique()) |
|
tasks_df = ( |
|
df[["id", "prompt"]].drop_duplicates() |
|
.assign(id_num=lambda x: x["id"].astype(int)) |
|
.sort_values("id_num") |
|
) |
|
|
|
task_choices = [] |
|
for _, row in tasks_df.iterrows(): |
|
limit = 30 if int(row["id"]) <= 50 else 60 |
|
preview = row["prompt"][:limit] + ("…" if len(row["prompt"]) > limit else "") |
|
task_choices.append(f"{row['id']}. {preview}") |
|
|
|
init_model = random.choice(models) if models else None |
|
init_task = random.choice(task_choices) if task_choices else None |
|
|
|
with gr.Row(): |
|
model_dd = gr.Dropdown(label="Select Model", choices=models, value=init_model, interactive=True) |
|
task_dd = gr.Dropdown(label="Select Task", choices=task_choices, value=init_task, interactive=True) |
|
|
|
user_md = gr.Markdown(elem_classes=["card", "scrollable-sm"]) |
|
article_md = gr.Markdown(elem_classes=["card", "scrollable-lg"]) |
|
scores_html = gr.HTML() |
|
|
|
def fetch(model, task_disp): |
|
if not model or not task_disp: |
|
msg = "请选择模型和任务。" |
|
return make_user_task_markdown("--", msg), make_article_markdown(msg), "" |
|
|
|
item_id = task_disp.split(".", 1)[0].strip() |
|
entry = df[(df["model_name"] == model) & (df["id"] == item_id)] |
|
if entry.empty: |
|
err = f"未找到模型 **{model}** 对应任务 **{item_id}** 的内容或分数。" |
|
return make_user_task_markdown(item_id, err), make_article_markdown(err), "" |
|
|
|
prompt = entry["prompt"].iloc[0] |
|
article = entry["article"].iloc[0] |
|
|
|
|
|
overall = entry["overall_score"].iloc[0] |
|
comprehensiveness = entry["comprehensiveness_score"].iloc[0] |
|
insight = entry["insight_score"].iloc[0] |
|
instruction = entry["instruction_following_score"].iloc[0] |
|
readability = entry["readability_score"].iloc[0] |
|
|
|
scores_content = make_scores_html(overall, comprehensiveness, insight, instruction, readability) |
|
|
|
return make_user_task_markdown(item_id, prompt), make_article_markdown(article), scores_content |
|
|
|
|
|
if init_model and init_task: |
|
user_md.value, article_md.value, scores_html.value = fetch(init_model, init_task) |
|
else: |
|
user_md.value = make_user_task_markdown("--", "请选择模型和任务。") |
|
article_md.value = make_article_markdown("请选择模型和任务。") |
|
scores_html.value = "" |
|
|
|
model_dd.change(fetch, inputs=[model_dd, task_dd], outputs=[user_md, article_md, scores_html]) |
|
task_dd.change(fetch, inputs=[model_dd, task_dd], outputs=[user_md, article_md, scores_html]) |