File size: 7,169 Bytes
c8ad832
 
a3b6c58
 
c8ad832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import sys
import subprocess
subprocess.check_call([sys.executable, "-m", "pip", "uninstall", "-y", "deepspeed"])
import random
import spaces
import numpy as np
import torch
from PIL import Image
import gradio as gr
from diffusers import DiffusionPipeline
from blip3o.conversation import conv_templates
from blip3o.model.builder import load_pretrained_model
from blip3o.utils import disable_torch_init
from blip3o.mm_utils import get_model_name_from_path
from qwen_vl_utils import process_vision_info
from huggingface_hub import snapshot_download
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor

processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")

# Constants
MAX_SEED = 10000

HUB_MODEL_ID = "BLIP3o/BLIP3o-Model" 
model_snapshot_path = snapshot_download(repo_id=HUB_MODEL_ID)
diffusion_path = os.path.join(model_snapshot_path, "diffusion-decoder")

def set_global_seed(seed: int = 42):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)

def add_template(prompt_list: list[str]) -> str:
    conv = conv_templates['qwen'].copy()
    conv.append_message(conv.roles[0], prompt_list[0])
    conv.append_message(conv.roles[1], None)
    return conv.get_prompt()

def make_prompt(text: str) -> list[str]:
    raw = f"Please generate image based on the following caption: {text}"
    return [add_template([raw])]

def randomize_seed_fn(seed: int, randomize: bool) -> int:
    return random.randint(0, MAX_SEED) if randomize else seed

def generate_image(prompt: str, seed: int, guidance_scale: float, randomize: bool) -> list[Image.Image]:
    seed = randomize_seed_fn(seed, randomize)
    set_global_seed(seed)
    formatted = make_prompt(prompt)
    images = []
    for _ in range(4):
        out = pipe(formatted, guidance_scale=guidance_scale)
        images.append(out.image)
    return images

@spaces.GPU
def process_image(prompt: str, img: Image.Image) -> str:
    messages = [{
        "role": "user",
        "content": [
            {"type": "image", "image": img},
            {"type": "text", "text": prompt},
        ],
    }]
    text_prompt_for_qwen = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text_prompt_for_qwen],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    ).to('cuda:0')
    generated_ids = multi_model.generate(**inputs, max_new_tokens=1024)
    input_token_len = inputs.input_ids.shape[1]
    generated_ids_trimmed = generated_ids[:, input_token_len:]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True,
        clean_up_tokenization_spaces=False
    )[0]
    return output_text

# Initialize model + pipeline
disable_torch_init()
model_path = os.path.expanduser(sys.argv[1])
tokenizer, multi_model, _ = load_pretrained_model(
    model_path, None, get_model_name_from_path(model_path)
)
pipe = DiffusionPipeline.from_pretrained(
    diffusion_path,
    custom_pipeline="pipeline_llava_gen",
    torch_dtype=torch.bfloat16,
    use_safetensors=True,
    variant="bf16",
    multimodal_encoder=multi_model,
    tokenizer=tokenizer,
    safety_checker=None
)
pipe.vae.to('cuda')
pipe.unet.to('cuda')

# Gradio UI
with gr.Blocks(title="BLIP3-o") as demo:
    with gr.Row():
        with gr.Column(scale=2):
            image_input = gr.Image(label="Input Image (optional)", type="pil")
            prompt_input = gr.Textbox(
                label="Prompt",
                placeholder="Describe the image you want...",
                lines=1
            )
            seed_slider = gr.Slider(
                label="Seed",
                minimum=0, maximum=int(MAX_SEED),
                step=1, value=42
            )
            randomize_checkbox = gr.Checkbox(
                label="Randomize seed", value=False
            )
            guidance_slider = gr.Slider(
                label="Guidance Scale",
                minimum=1.0, maximum=30.0,
                step=0.5, value=3.0
            )
            run_btn    = gr.Button("Run")
            clean_btn  = gr.Button("Clean All")


            text_only = [
                [None, "A cute cat."],
                [None, "A young woman with freckles wearing a straw hat, standing in a golden wheat field."],
                [None, "A group of friends having a picnic in the park."]
            ]

            image_plus_text = [
                [f"animal-compare.png", "Are these two pictures showing the same kind of animal?"],
                [f"funny_image.jpeg", "Why is this image funny?"],
            ]

            all_examples = text_only + image_plus_text

            gr.Examples(
                examples=all_examples,
                inputs=[image_input, prompt_input],
                cache_examples=False,
                label="Try a sample (image generation (text input) or image understanding (image + text))"
            )



        with gr.Column(scale=3):
            output_gallery = gr.Gallery(label="Generated Images", columns=4)
            output_text    = gr.Textbox(label="Generated Text", visible=False)

    def run_all(img, prompt, seed, guidance, randomize):
        if img is not None:
            txt = process_image(prompt, img)
            return (
                gr.update(value=[], visible=False),
                gr.update(value=txt, visible=True)
            )
        else:
            imgs = generate_image(prompt, seed, guidance, randomize)
            return (
                gr.update(value=imgs, visible=True),
                gr.update(value="", visible=False)
            )

    def clean_all():
        return (
            gr.update(value=None),
            gr.update(value=""),
            gr.update(value=42),
            gr.update(value=False),
            gr.update(value=3.0),
            gr.update(value=[], visible=False),
            gr.update(value="", visible=False)
        )

    # Chain seed randomization → run_all when clicking “Run”
    run_btn.click(
        fn=randomize_seed_fn,
        inputs=[seed_slider, randomize_checkbox],
        outputs=seed_slider
    ).then(
        fn=run_all,
        inputs=[image_input, prompt_input, seed_slider, guidance_slider, randomize_checkbox],
        outputs=[output_gallery, output_text]
    )

    # Bind Enter on the prompt textbox to the same chain
    prompt_input.submit(
        fn=randomize_seed_fn,
        inputs=[seed_slider, randomize_checkbox],
        outputs=seed_slider
    ).then(
        fn=run_all,
        inputs=[image_input, prompt_input, seed_slider, guidance_slider, randomize_checkbox],
        outputs=[output_gallery, output_text]
    )

    # Clean all inputs/outputs
    clean_btn.click(
        fn=clean_all,
        inputs=[],
        outputs=[image_input, prompt_input, seed_slider,
                 randomize_checkbox, guidance_slider,
                 output_gallery, output_text]
    )

if __name__ == "__main__":
    demo.launch(share=True)