Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,176 Bytes
c8ad832 a3b6c58 c8ad832 e8f05e4 c8ad832 7142881 baf4289 7142881 c8ad832 baf4289 c8ad832 7142881 218889f c8ad832 7142881 c8ad832 b9a1898 c8ad832 9392a20 c8ad832 dd4fc24 c8ad832 dd4fc24 c8ad832 dd4fc24 c8ad832 c15770d 270fb9f c15770d c8ad832 7142881 bd41c86 7142881 bd41c86 7142881 baf4289 9b82590 baf4289 7142881 c8ad832 7142881 c8ad832 7142881 bd41c86 7142881 c8ad832 7142881 c8ad832 bd41c86 7142881 c8ad832 7142881 7acdf62 7142881 7acdf62 7142881 c8ad832 2ce23eb 7142881 c8ad832 7142881 c8ad832 7142881 c8ad832 7142881 c8ad832 baf4289 7142881 c8ad832 7142881 c8ad832 7142881 c8ad832 7142881 c8ad832 7142881 c8ad832 7142881 c8ad832 7142881 c8ad832 7142881 c8ad832 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import os
import sys
import subprocess
subprocess.check_call([sys.executable, "-m", "pip", "uninstall", "-y", "deepspeed"])
import random
import spaces
import numpy as np
import torch
from PIL import Image
import gradio as gr
from diffusers import DiffusionPipeline
from blip3o.conversation import conv_templates
from blip3o.model.builder import load_pretrained_model
from blip3o.utils import disable_torch_init
from blip3o.mm_utils import get_model_name_from_path
from qwen_vl_utils import process_vision_info
from huggingface_hub import snapshot_download
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
# Constants
MAX_SEED = 10000
HUB_MODEL_ID = "BLIP3o/BLIP3o-Model-8B"
model_snapshot_path = snapshot_download(repo_id=HUB_MODEL_ID)
diffusion_path = os.path.join(model_snapshot_path, "diffusion-decoder")
def set_global_seed(seed: int = 42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def add_template(prompt_list: list[str]) -> str:
conv = conv_templates['qwen'].copy()
conv.append_message(conv.roles[0], prompt_list[0])
conv.append_message(conv.roles[1], None)
return conv.get_prompt()
def make_prompt(text: str) -> list[str]:
raw = f"Please generate image based on the following caption: {text}"
return [add_template([raw])]
def randomize_seed_fn(seed: int, randomize: bool) -> int:
return random.randint(0, MAX_SEED) if randomize else seed
@spaces.GPU
def generate_image(prompt: str, final_seed: int, guidance_scale: float, images_to_generate: int, progress: gr.Progress = gr.Progress(track_tqdm=True)) -> list[Image.Image]:
set_global_seed(final_seed)
formatted = make_prompt(prompt)
images = []
for _ in range(images_to_generate):
out = pipe(formatted, guidance_scale=guidance_scale)
images.append(out.image)
return images
@spaces.GPU
def process_image(prompt: str, img: Image.Image, progress: gr.Progress = gr.Progress(track_tqdm=True)) -> str:
messages = [{
"role": "user",
"content": [
{"type": "image", "image": img},
{"type": "text", "text": prompt},
],
}]
# print(messages) # Kept original print for debugging if needed
text_prompt_for_qwen = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text_prompt_for_qwen],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to('cuda')
generated_ids = multi_model.generate(**inputs, max_new_tokens=1024)
input_token_len = inputs.input_ids.shape[1]
generated_ids_trimmed = generated_ids[:, input_token_len:]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
return output_text
print("Diffusion path: ", diffusion_path)
# Initialize model + pipeline
disable_torch_init()
tokenizer, multi_model, _ = load_pretrained_model(
model_snapshot_path, None, get_model_name_from_path(model_snapshot_path)
)
pipe = DiffusionPipeline.from_pretrained(
diffusion_path,
custom_pipeline="pipeline_llava_gen",
torch_dtype=torch.bfloat16,
use_safetensors=True,
variant="bf16",
multimodal_encoder=multi_model,
tokenizer=tokenizer,
safety_checker=None
)
pipe.vae.to('cuda')
pipe.unet.to('cuda')
# Gradio UI
with gr.Blocks(title="BLIP3-o") as demo:
gr.Markdown('''# BLIP3-o
A fully open source unified model for both image understanding and generation, check our Github: https://github.com/JiuhaiChen/BLIP3o and Paper: https://arxiv.org/abs/2505.09568
''')
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Text → Image (Image Generation)"):
prompt_gen_input = gr.Textbox(
label="Prompt",
placeholder="Describe the image you want...",
lines=1
)
seed_slider = gr.Slider(
label="Seed",
minimum=0, maximum=int(MAX_SEED),
step=1, value=42
)
randomize_checkbox = gr.Checkbox(
label="Randomize seed", value=False
)
guidance_slider = gr.Slider(
label="Guidance Scale",
minimum=1.0, maximum=30.0,
step=0.5, value=3.0
)
images_to_generate = gr.Slider(
label="Number of images",
minimum=1, maximum=4,
step=1, value=4
)
run_image_gen_btn = gr.Button("Generate Image")
text_gen_examples_data = [
["A cute cat."],
["A young woman with freckles wearing a straw hat, standing in a golden wheat field."],
["A group of friends having a picnic in the park."]
]
gr.Examples(
examples=text_gen_examples_data,
inputs=[prompt_gen_input],
cache_examples=False, # As per original
label="Image Generation Examples"
)
with gr.TabItem("Image → Text (Image Understanding)"):
image_understand_input = gr.Image(label="Input Image", type="pil")
prompt_understand_input = gr.Textbox(
label="Question about image",
placeholder="Describe what you want to know about the image (e.g., What is in this image?)",
lines=1
)
run_image_understand_btn = gr.Button("Understand Image")
image_understanding_examples_data = [
["animal-compare.png", "Are these two pictures showing the same kind of animal?"],
["funny_image.jpeg", "Why is this image funny?"],
["animal-compare.png", "Describe this image in detail."],
]
gr.Examples(
examples=image_understanding_examples_data,
inputs=[image_understand_input, prompt_understand_input],
cache_examples=False, # As per original
label="Image Understanding Examples"
)
clean_btn = gr.Button("Clear All Inputs/Outputs")
with gr.Column():
output_gallery = gr.Gallery(label="Generated Images", columns=2, visible=True) # Default to visible, content will control
output_text = gr.Textbox(label="Generated Text", visible=False, lines=5, interactive=False)
@spaces.GPU
def run_generate_image_tab(prompt, seed, guidance, num_images, progress=gr.Progress(track_tqdm=True)):
# Seed is already finalized by the randomize_seed_fn in the click chain
imgs = generate_image(prompt, seed, guidance, num_images, progress=progress)
return (
gr.update(value=imgs, visible=True),
gr.update(value="", visible=False)
)
@spaces.GPU
def run_process_image_tab(img, prompt, progress=gr.Progress(track_tqdm=True)):
if img is None:
return (
gr.update(value=[], visible=False),
gr.update(value="Please upload an image for understanding.", visible=True)
)
txt = process_image(prompt, img, progress=progress)
return (
gr.update(value=[], visible=False),
gr.update(value=txt, visible=True)
)
def clean_all_fn():
return (
# Tab 1 inputs
gr.update(value=""), # prompt_gen_input
gr.update(value=42), # seed_slider
gr.update(value=False), # randomize_checkbox
gr.update(value=3.0), # guidance_slider
# Tab 2 inputs
gr.update(value=None), # image_understand_input
gr.update(value=""), # prompt_understand_input
# Outputs
gr.update(value=[], visible=True), # output_gallery (reset and keep visible for next gen)
gr.update(value="", visible=False) # output_text (reset and hide)
)
gen_inputs = [prompt_gen_input, seed_slider, guidance_slider, images_to_generate]
run_image_gen_btn.click(
fn=randomize_seed_fn,
inputs=[seed_slider, randomize_checkbox],
outputs=[seed_slider]
).then(
fn=run_generate_image_tab,
inputs=gen_inputs, # prompt_gen_input, seed_slider (updated), guidance_slider
outputs=[output_gallery, output_text]
)
prompt_gen_input.submit(
fn=randomize_seed_fn,
inputs=[seed_slider, randomize_checkbox],
outputs=[seed_slider]
).then(
fn=run_generate_image_tab,
inputs=gen_inputs,
outputs=[output_gallery, output_text]
)
# Event listeners for Image -> Text
understand_inputs = [image_understand_input, prompt_understand_input]
run_image_understand_btn.click(
fn=run_process_image_tab,
inputs=understand_inputs,
outputs=[output_gallery, output_text]
)
prompt_understand_input.submit(
fn=run_process_image_tab,
inputs=understand_inputs,
outputs=[output_gallery, output_text]
)
clean_btn.click(
fn=clean_all_fn,
inputs=[],
outputs=[
prompt_gen_input, seed_slider, randomize_checkbox, guidance_slider,
image_understand_input, prompt_understand_input,
output_gallery, output_text
]
)
if __name__ == "__main__":
demo.launch(share=True) |