blip-3o / app.py
multimodalart's picture
Create app.py
c8ad832 verified
raw
history blame
7.07 kB
import os
import sys
import random
import spaces
import numpy as np
import torch
from PIL import Image
import gradio as gr
from diffusers import DiffusionPipeline
from blip3o.conversation import conv_templates
from blip3o.model.builder import load_pretrained_model
from blip3o.utils import disable_torch_init
from blip3o.mm_utils import get_model_name_from_path
from qwen_vl_utils import process_vision_info
from huggingface_hub import snapshot_download
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
# Constants
MAX_SEED = 10000
HUB_MODEL_ID = "BLIP3o/BLIP3o-Model"
model_snapshot_path = snapshot_download(repo_id=HUB_MODEL_ID)
diffusion_path = os.path.join(model_snapshot_path, "diffusion-decoder")
def set_global_seed(seed: int = 42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def add_template(prompt_list: list[str]) -> str:
conv = conv_templates['qwen'].copy()
conv.append_message(conv.roles[0], prompt_list[0])
conv.append_message(conv.roles[1], None)
return conv.get_prompt()
def make_prompt(text: str) -> list[str]:
raw = f"Please generate image based on the following caption: {text}"
return [add_template([raw])]
def randomize_seed_fn(seed: int, randomize: bool) -> int:
return random.randint(0, MAX_SEED) if randomize else seed
def generate_image(prompt: str, seed: int, guidance_scale: float, randomize: bool) -> list[Image.Image]:
seed = randomize_seed_fn(seed, randomize)
set_global_seed(seed)
formatted = make_prompt(prompt)
images = []
for _ in range(4):
out = pipe(formatted, guidance_scale=guidance_scale)
images.append(out.image)
return images
@spaces.GPU
def process_image(prompt: str, img: Image.Image) -> str:
messages = [{
"role": "user",
"content": [
{"type": "image", "image": img},
{"type": "text", "text": prompt},
],
}]
text_prompt_for_qwen = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text_prompt_for_qwen],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to('cuda:0')
generated_ids = multi_model.generate(**inputs, max_new_tokens=1024)
input_token_len = inputs.input_ids.shape[1]
generated_ids_trimmed = generated_ids[:, input_token_len:]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
return output_text
# Initialize model + pipeline
disable_torch_init()
model_path = os.path.expanduser(sys.argv[1])
tokenizer, multi_model, _ = load_pretrained_model(
model_path, None, get_model_name_from_path(model_path)
)
pipe = DiffusionPipeline.from_pretrained(
diffusion_path,
custom_pipeline="pipeline_llava_gen",
torch_dtype=torch.bfloat16,
use_safetensors=True,
variant="bf16",
multimodal_encoder=multi_model,
tokenizer=tokenizer,
safety_checker=None
)
pipe.vae.to('cuda')
pipe.unet.to('cuda')
# Gradio UI
with gr.Blocks(title="BLIP3-o") as demo:
with gr.Row():
with gr.Column(scale=2):
image_input = gr.Image(label="Input Image (optional)", type="pil")
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Describe the image you want...",
lines=1
)
seed_slider = gr.Slider(
label="Seed",
minimum=0, maximum=int(MAX_SEED),
step=1, value=42
)
randomize_checkbox = gr.Checkbox(
label="Randomize seed", value=False
)
guidance_slider = gr.Slider(
label="Guidance Scale",
minimum=1.0, maximum=30.0,
step=0.5, value=3.0
)
run_btn = gr.Button("Run")
clean_btn = gr.Button("Clean All")
text_only = [
[None, "A cute cat."],
[None, "A young woman with freckles wearing a straw hat, standing in a golden wheat field."],
[None, "A group of friends having a picnic in the park."]
]
image_plus_text = [
[f"animal-compare.png", "Are these two pictures showing the same kind of animal?"],
[f"funny_image.jpeg", "Why is this image funny?"],
]
all_examples = text_only + image_plus_text
gr.Examples(
examples=all_examples,
inputs=[image_input, prompt_input],
cache_examples=False,
label="Try a sample (image generation (text input) or image understanding (image + text))"
)
with gr.Column(scale=3):
output_gallery = gr.Gallery(label="Generated Images", columns=4)
output_text = gr.Textbox(label="Generated Text", visible=False)
def run_all(img, prompt, seed, guidance, randomize):
if img is not None:
txt = process_image(prompt, img)
return (
gr.update(value=[], visible=False),
gr.update(value=txt, visible=True)
)
else:
imgs = generate_image(prompt, seed, guidance, randomize)
return (
gr.update(value=imgs, visible=True),
gr.update(value="", visible=False)
)
def clean_all():
return (
gr.update(value=None),
gr.update(value=""),
gr.update(value=42),
gr.update(value=False),
gr.update(value=3.0),
gr.update(value=[], visible=False),
gr.update(value="", visible=False)
)
# Chain seed randomization → run_all when clicking “Run”
run_btn.click(
fn=randomize_seed_fn,
inputs=[seed_slider, randomize_checkbox],
outputs=seed_slider
).then(
fn=run_all,
inputs=[image_input, prompt_input, seed_slider, guidance_slider, randomize_checkbox],
outputs=[output_gallery, output_text]
)
# Bind Enter on the prompt textbox to the same chain
prompt_input.submit(
fn=randomize_seed_fn,
inputs=[seed_slider, randomize_checkbox],
outputs=seed_slider
).then(
fn=run_all,
inputs=[image_input, prompt_input, seed_slider, guidance_slider, randomize_checkbox],
outputs=[output_gallery, output_text]
)
# Clean all inputs/outputs
clean_btn.click(
fn=clean_all,
inputs=[],
outputs=[image_input, prompt_input, seed_slider,
randomize_checkbox, guidance_slider,
output_gallery, output_text]
)
if __name__ == "__main__":
demo.launch(share=True)