blip-3o / app.py
multimodalart's picture
Update app.py
a3b6c58 verified
raw
history blame
7.17 kB
import os
import sys
import subprocess
subprocess.check_call([sys.executable, "-m", "pip", "uninstall", "-y", "deepspeed"])
import random
import spaces
import numpy as np
import torch
from PIL import Image
import gradio as gr
from diffusers import DiffusionPipeline
from blip3o.conversation import conv_templates
from blip3o.model.builder import load_pretrained_model
from blip3o.utils import disable_torch_init
from blip3o.mm_utils import get_model_name_from_path
from qwen_vl_utils import process_vision_info
from huggingface_hub import snapshot_download
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
# Constants
MAX_SEED = 10000
HUB_MODEL_ID = "BLIP3o/BLIP3o-Model"
model_snapshot_path = snapshot_download(repo_id=HUB_MODEL_ID)
diffusion_path = os.path.join(model_snapshot_path, "diffusion-decoder")
def set_global_seed(seed: int = 42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def add_template(prompt_list: list[str]) -> str:
conv = conv_templates['qwen'].copy()
conv.append_message(conv.roles[0], prompt_list[0])
conv.append_message(conv.roles[1], None)
return conv.get_prompt()
def make_prompt(text: str) -> list[str]:
raw = f"Please generate image based on the following caption: {text}"
return [add_template([raw])]
def randomize_seed_fn(seed: int, randomize: bool) -> int:
return random.randint(0, MAX_SEED) if randomize else seed
def generate_image(prompt: str, seed: int, guidance_scale: float, randomize: bool) -> list[Image.Image]:
seed = randomize_seed_fn(seed, randomize)
set_global_seed(seed)
formatted = make_prompt(prompt)
images = []
for _ in range(4):
out = pipe(formatted, guidance_scale=guidance_scale)
images.append(out.image)
return images
@spaces.GPU
def process_image(prompt: str, img: Image.Image) -> str:
messages = [{
"role": "user",
"content": [
{"type": "image", "image": img},
{"type": "text", "text": prompt},
],
}]
text_prompt_for_qwen = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text_prompt_for_qwen],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to('cuda:0')
generated_ids = multi_model.generate(**inputs, max_new_tokens=1024)
input_token_len = inputs.input_ids.shape[1]
generated_ids_trimmed = generated_ids[:, input_token_len:]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
return output_text
# Initialize model + pipeline
disable_torch_init()
model_path = os.path.expanduser(sys.argv[1])
tokenizer, multi_model, _ = load_pretrained_model(
model_path, None, get_model_name_from_path(model_path)
)
pipe = DiffusionPipeline.from_pretrained(
diffusion_path,
custom_pipeline="pipeline_llava_gen",
torch_dtype=torch.bfloat16,
use_safetensors=True,
variant="bf16",
multimodal_encoder=multi_model,
tokenizer=tokenizer,
safety_checker=None
)
pipe.vae.to('cuda')
pipe.unet.to('cuda')
# Gradio UI
with gr.Blocks(title="BLIP3-o") as demo:
with gr.Row():
with gr.Column(scale=2):
image_input = gr.Image(label="Input Image (optional)", type="pil")
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Describe the image you want...",
lines=1
)
seed_slider = gr.Slider(
label="Seed",
minimum=0, maximum=int(MAX_SEED),
step=1, value=42
)
randomize_checkbox = gr.Checkbox(
label="Randomize seed", value=False
)
guidance_slider = gr.Slider(
label="Guidance Scale",
minimum=1.0, maximum=30.0,
step=0.5, value=3.0
)
run_btn = gr.Button("Run")
clean_btn = gr.Button("Clean All")
text_only = [
[None, "A cute cat."],
[None, "A young woman with freckles wearing a straw hat, standing in a golden wheat field."],
[None, "A group of friends having a picnic in the park."]
]
image_plus_text = [
[f"animal-compare.png", "Are these two pictures showing the same kind of animal?"],
[f"funny_image.jpeg", "Why is this image funny?"],
]
all_examples = text_only + image_plus_text
gr.Examples(
examples=all_examples,
inputs=[image_input, prompt_input],
cache_examples=False,
label="Try a sample (image generation (text input) or image understanding (image + text))"
)
with gr.Column(scale=3):
output_gallery = gr.Gallery(label="Generated Images", columns=4)
output_text = gr.Textbox(label="Generated Text", visible=False)
def run_all(img, prompt, seed, guidance, randomize):
if img is not None:
txt = process_image(prompt, img)
return (
gr.update(value=[], visible=False),
gr.update(value=txt, visible=True)
)
else:
imgs = generate_image(prompt, seed, guidance, randomize)
return (
gr.update(value=imgs, visible=True),
gr.update(value="", visible=False)
)
def clean_all():
return (
gr.update(value=None),
gr.update(value=""),
gr.update(value=42),
gr.update(value=False),
gr.update(value=3.0),
gr.update(value=[], visible=False),
gr.update(value="", visible=False)
)
# Chain seed randomization → run_all when clicking “Run”
run_btn.click(
fn=randomize_seed_fn,
inputs=[seed_slider, randomize_checkbox],
outputs=seed_slider
).then(
fn=run_all,
inputs=[image_input, prompt_input, seed_slider, guidance_slider, randomize_checkbox],
outputs=[output_gallery, output_text]
)
# Bind Enter on the prompt textbox to the same chain
prompt_input.submit(
fn=randomize_seed_fn,
inputs=[seed_slider, randomize_checkbox],
outputs=seed_slider
).then(
fn=run_all,
inputs=[image_input, prompt_input, seed_slider, guidance_slider, randomize_checkbox],
outputs=[output_gallery, output_text]
)
# Clean all inputs/outputs
clean_btn.click(
fn=clean_all,
inputs=[],
outputs=[image_input, prompt_input, seed_slider,
randomize_checkbox, guidance_slider,
output_gallery, output_text]
)
if __name__ == "__main__":
demo.launch(share=True)