Spaces:
Running
on
Zero
Running
on
Zero
from abc import ABC, abstractmethod | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .multimodal_encoder.builder import build_vision_tower, build_gen_vision_tower, build_dit | |
from .multimodal_projector.builder import build_vision_projector, build_down_projector, build_gen_vision_projector | |
from blip3o.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IMAGE_TOKEN_IDX, DEFAULT_IM_START_TOKEN_IDX, DEFAULT_IM_END_TOKEN_IDX, UND_IMAGE_TOKEN_IDX | |
class blip3oMetaModel: | |
def __init__(self, config): | |
super(blip3oMetaModel, self).__init__(config) | |
if hasattr(config, "mm_vision_tower"): | |
# self.vision_tower = build_vision_tower(config, delay_load=True) | |
# self.mm_projector = build_vision_projector(config) | |
self.down_projector = build_down_projector(config) | |
if 'unpad' in getattr(config, 'mm_patch_merge_type', ''): | |
self.image_newline = nn.Parameter( | |
torch.empty(config.hidden_size, dtype=self.dtype) | |
) | |
if hasattr(config, "gen_vision_tower"): | |
self.gen_vision_tower = build_gen_vision_tower(config, delay_load=True) | |
# self.gen_projector = build_gen_vision_projector(config) | |
self.latent_queries = nn.Parameter(torch.randn(1, config.n_query, config.hidden_size)) | |
print(f" latent query size {self.latent_queries.shape}") | |
if 'unpad' in getattr(config, 'mm_patch_merge_type', ''): | |
self.image_newline = nn.Parameter( | |
torch.empty(config.hidden_size, dtype=self.dtype) | |
) | |
self.dit, self.vae, self.noise_scheduler = build_dit(config) | |
# def get_vision_tower(self): | |
# vision_tower = getattr(self, 'vision_tower', None) | |
# if type(vision_tower) is list: | |
# vision_tower = vision_tower[0] | |
# return vision_tower | |
def get_gen_vision_tower(self): | |
gen_vision_tower = getattr(self, 'gen_vision_tower', None) | |
if type(gen_vision_tower) is list: | |
gen_vision_tower = gen_vision_tower[0] | |
return gen_vision_tower | |
def initialize_vision_modules(self, model_args, fsdp=None): | |
gen_vision_tower = model_args.gen_vision_tower | |
mm_vision_select_layer = model_args.mm_vision_select_layer | |
mm_vision_select_feature = model_args.mm_vision_select_feature | |
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter | |
pretrain_gen_mlp_adapter = model_args.pretrain_gen_mlp_adapter | |
mm_patch_merge_type = model_args.mm_patch_merge_type | |
self.config.gen_vision_tower = gen_vision_tower | |
self.config.vision_tower_pretrained = getattr(model_args, "vision_tower_pretrained", "") | |
if getattr(self, 'dit', None) is None: | |
print("random initiation the DiT !!!") | |
self.dit, self.vae, self.noise_scheduler = build_dit(model_args) | |
else: | |
print("DiT load from checkpoint!!!") | |
for p in self.dit.parameters(): | |
p.requires_grad = True | |
if self.get_gen_vision_tower() is None: | |
gen_vision_tower = build_gen_vision_tower(model_args) | |
if fsdp is not None and len(fsdp) > 0: | |
self.gen_vision_tower = [gen_vision_tower] | |
else: | |
self.gen_vision_tower = gen_vision_tower | |
else: | |
if fsdp is not None and len(fsdp) > 0: | |
gen_vision_tower = self.gen_vision_tower[0] | |
else: | |
gen_vision_tower = self.gen_vision_tower | |
gen_vision_tower.load_model() | |
self.config.use_mm_proj = True | |
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') | |
# self.config.gen_projector_type = getattr(model_args, 'gen_projector_type', 'linear') | |
self.config.gen_hidden_size = gen_vision_tower.hidden_size | |
self.config.mm_vision_select_layer = mm_vision_select_layer | |
self.config.mm_vision_select_feature = mm_vision_select_feature | |
self.config.mm_patch_merge_type = mm_patch_merge_type | |
self.config.n_query = model_args.n_query | |
self.config.gen_pooling = model_args.gen_pooling | |
# if getattr(self, 'mm_projector', None) is None: | |
# print("random initiation the mm_project !!!") | |
# self.mm_projector = build_vision_projector(self.config) | |
# if 'unpad' in mm_patch_merge_type: | |
# embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype)) | |
# self.image_newline = nn.Parameter( | |
# torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std | |
# ) | |
# else: | |
# # In case it is frozen by LoRA | |
# for p in self.mm_projector.parameters(): | |
# p.requires_grad = True | |
if getattr(self, 'down_projector', None) is None: | |
print("random initiation the down_projector !!!") | |
self.down_projector = build_down_projector(self.config) | |
else: | |
# In case it is frozen by LoRA | |
for p in self.down_projector.parameters(): | |
p.requires_grad = True | |
if getattr(self, 'latent_queries', None) is None: | |
print("random initiation the latent_queries !!!") | |
self.latent_queries = nn.Parameter(torch.randn(1, self.config.n_query, self.config.hidden_size)) | |
else: | |
print("latent_queries load from checkpoint!!!") | |
self.latent_queries.requires_grad = True | |
if pretrain_mm_mlp_adapter is not None: | |
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') | |
def get_w(weights, keyword): | |
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} | |
# self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) | |
def unpad_image(tensor, original_size): | |
""" | |
Unpads a PyTorch tensor of a padded and resized image. | |
Args: | |
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format. | |
original_size (tuple): The original size of PIL image (width, height). | |
Returns: | |
torch.Tensor: The unpadded image tensor. | |
""" | |
original_width, original_height = original_size | |
current_height, current_width = tensor.shape[1:] | |
original_aspect_ratio = original_width / original_height | |
current_aspect_ratio = current_width / current_height | |
if original_aspect_ratio > current_aspect_ratio: | |
scale_factor = current_width / original_width | |
new_height = int(original_height * scale_factor) | |
padding = (current_height - new_height) // 2 | |
unpadded_tensor = tensor[:, padding:current_height - padding, :] | |
else: | |
scale_factor = current_height / original_height | |
new_width = int(original_width * scale_factor) | |
padding = (current_width - new_width) // 2 | |
unpadded_tensor = tensor[:, :, padding:current_width - padding] | |
return unpadded_tensor | |
class blip3oMetaForCausalLM(ABC): | |
def get_model(self): | |
pass | |
def get_vision_tower(self): | |
return self.get_model().get_vision_tower() | |
def get_gen_vision_tower(self): | |
return self.get_model().get_gen_vision_tower() | |
def encode_image(self, images): | |
# breakpoint() | |
gen_vision_tower = self.get_gen_vision_tower() | |
device = gen_vision_tower.device | |
images = images.to(device) | |
prompt_image_embeds = gen_vision_tower(images) | |
if 'early' in self.get_gen_pooling(): | |
prompt_image_embeds = self.pool_img(prompt_image_embeds) | |
num_img, _, c = prompt_image_embeds.shape | |
# prompt_image_embeds = prompt_image_embeds.contiguous().view(-1, c) | |
# ------------- compute similarity ------- | |
all_dist = 0 | |
count = 0 | |
for i in range(2, prompt_image_embeds.shape[1]-1): | |
diff = (prompt_image_embeds[:,i,:].unsqueeze(1) - prompt_image_embeds[:,:i,:]) | |
dist = torch.sqrt(diff.square().sum(-1)).min().item() | |
all_dist+=dist | |
count+=1 | |
all_dist /= count | |
# self.dist = all_dist | |
# print(self.dist) | |
return prompt_image_embeds | |
def get_mm_projector(self): | |
return self.get_model().mm_projector | |
def get_gen_projector(self): | |
return None | |
def get_n_query(self): | |
return self.get_model().config.n_query | |
def get_gen_pooling(self): | |
return self.get_model().config.gen_pooling | |
def pool_img(self, image_features): | |
num_img, n, c = image_features.shape | |
gen_pooling = self.get_gen_pooling() | |
# n_query = self.get_n_query() | |
stride = int(gen_pooling.split('_')[-1]) | |
sqrt_n = int(n**0.5) | |
image_features = image_features.permute(0, 2, 1).view(num_img, c, sqrt_n, sqrt_n) | |
image_features = F.avg_pool2d(image_features, kernel_size=(stride, stride), stride=stride) | |
# image_features = image_features.view(num_img, c, -1).permute(0,2,1).contiguous() | |
return image_features | |
def get_sigmas(self, timesteps, device, n_dim=4, dtype=torch.float32): | |
sigmas = self.get_model().noise_scheduler.sigmas.to(device=device, dtype=dtype) | |
schedule_timesteps = self.get_model().noise_scheduler.timesteps.to(device=device) | |
timesteps = timesteps.to(device) | |
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] | |
sigma = sigmas[step_indices].flatten() | |
while len(sigma.shape) < n_dim: | |
sigma = sigma.unsqueeze(-1) | |
return sigma | |
def mask_drop(self, latents, drop_prob=0.1): | |
if drop_prob <= 0: | |
return latents | |
mask = torch.bernoulli(torch.zeros(latents.shape[0], device=latents.device, dtype=latents.dtype) + drop_prob) | |
while len(mask.shape) < len(latents.shape): | |
mask = mask.unsqueeze(-1) | |
mask = 1 - mask # need to flip 0 <-> 1 | |
return latents * mask | |
def prepare_inputs_labels_for_multimodal( | |
self, input_ids, position_ids, attention_mask, past_key_values, labels, | |
gen_images, und_images, grid_thw, i_s_pos, image_sizes=None | |
): | |
pad_ids = 128256 | |
vision_tower = self.visual | |
gen_vision_tower = self.get_gen_vision_tower() | |
if (gen_images is None and und_images is None) or input_ids.shape[1] == 1: | |
return input_ids, position_ids, attention_mask, past_key_values, None, labels, None, None, None | |
prompt_image_embeds = gen_vision_tower(gen_images) # TODO: check dimension | |
if 'early' in self.get_gen_pooling(): | |
prompt_image_embeds = self.pool_img(prompt_image_embeds) | |
target_image_embeds = torch.clone(prompt_image_embeds).detach() | |
latent_queries = self.get_model().latent_queries.repeat(input_ids.shape[0], 1, 1) | |
H = latent_queries.shape[-1] | |
latent_queries = latent_queries.contiguous().view(-1, H) | |
# if not gen_images is None: | |
# prompt_image_embeds = gen_vision_tower(gen_images) # TODO: check dimension | |
# if 'early' in self.get_gen_pooling(): | |
# prompt_image_embeds = self.pool_img(prompt_image_embeds) | |
# # num_img, _, c = prompt_image_embeds.shape # [batch, 729, 1152] | |
# # prompt_image_embeds = prompt_image_embeds.contiguous().view(-1, c) | |
# target_image_embeds = torch.clone(prompt_image_embeds).detach() | |
# # prompt_image_embeds = gen_projector(prompt_image_embeds) | |
# latent_queries = self.get_model().latent_queries.repeat(input_ids.shape[0], 1, 1) | |
# H = latent_queries.shape[-1] | |
# latent_queries = latent_queries.contiguous().view(-1, H) | |
# else: | |
# target_image_embeds = None | |
# num_img = und_images.shape[0] | |
# dummy = torch.zeros(num_img, 3, 448, 448 , dtype=und_images.dtype, device=und_images.device) # TODO | |
# temp = gen_vision_tower(dummy)[:,:729,:] | |
# num_img, _, c = temp.shape | |
# temp = temp.contiguous().view(-1, c) * 1e-20 | |
# # temp = gen_projector(temp) * 1e-9 | |
# latent_queries = self.get_model().latent_queries.repeat(input_ids.shape[0], 1, 1) | |
# H = latent_queries.shape[-1] | |
# latent_queries = latent_queries.contiguous().view(-1, H) | |
if not und_images is None: | |
und_image_embeds = vision_tower(und_images, grid_thw=grid_thw) | |
# _, c = und_image_embeds.shape | |
# batch_size = und_images.shape[0] | |
# und_image_embeds = und_image_embeds.view(batch_size, -1, c) | |
# und_image_embeds = und_image_embeds.contiguous().view(-1, c) | |
# und_image_embeds = mm_projector(und_image_embeds) | |
# else: | |
# num_img = input_ids.shape[0] | |
# dummy = torch.zeros(num_img, 3, 384, 384 , dtype=gen_images.dtype, device=gen_images.device) # clip (3, 336, 336) | |
# temp = vision_tower(dummy) | |
# if 'early' in self.get_gen_pooling(): | |
# temp = temp[:,:64,:] | |
# num_img, _, c = temp.shape | |
# temp = temp.contiguous().view(-1, c) | |
# temp = mm_projector(temp) * 1e-20 | |
# latent_queries += temp | |
image_idx = (input_ids == IMAGE_TOKEN_IDX) | |
und_image_idx = (input_ids == UND_IMAGE_TOKEN_IDX) | |
# img_indicator = torch.clone(image_idx) | |
output_indicator = labels != -100 | |
input_indicator = labels == -100 | |
# img_loss_indicator = torch.logical_and(output_indicator, image_idx) | |
# img_loss_indicator = torch.cat( | |
# [img_loss_indicator[:, 1:], img_loss_indicator[:, :1]], dim=1) | |
# img_indicator = torch.cat( | |
# [img_indicator[:, 1:], img_indicator[:, :1]], dim=1) | |
# if not target_image_embeds is None: | |
# target_image_embeds = target_image_embeds[-img_loss_indicator.sum():,:] | |
text_embeds = self.get_model().embed_tokens(input_ids) | |
# N_QUERY = self.get_n_query() | |
gen_img_idx = torch.logical_and(output_indicator, image_idx) | |
# if not target_image_embeds is None: | |
text_embeds = text_embeds.clone() | |
text_embeds[gen_img_idx] = latent_queries | |
# text_embeds[gen_img_idx] = prompt_image_embeds.to(text_embeds.device)[:gen_img_idx.sum(),:] | |
# target_image_embeds = target_image_embeds.to(text_embeds.device)[:gen_img_idx.sum(),:] | |
und_img_idx = torch.logical_and(input_indicator, und_image_idx) | |
if not und_images is None: | |
text_embeds[und_img_idx] = und_image_embeds.to(text_embeds.device)[:und_img_idx.sum(), :] | |
labels[image_idx] = -100 | |
return None, position_ids, attention_mask, past_key_values, text_embeds, labels, target_image_embeds | |
def initialize_vision_tokenizer(self, model_args, tokenizer): | |
if model_args.mm_use_im_patch_token: | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
self.resize_token_embeddings(len(tokenizer)) | |
if model_args.mm_use_im_start_end: | |
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | |
self.resize_token_embeddings(len(tokenizer)) | |
if num_new_tokens > 0: | |
input_embeddings = self.get_input_embeddings().weight.data | |
output_embeddings = self.get_output_embeddings().weight.data | |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True) | |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True) | |
input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
output_embeddings[-num_new_tokens:] = output_embeddings_avg | |
if model_args.tune_mm_mlp_adapter: | |
for p in self.get_input_embeddings().parameters(): | |
p.requires_grad = True | |
for p in self.get_output_embeddings().parameters(): | |
p.requires_grad = False | |
if model_args.pretrain_mm_mlp_adapter: | |
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') | |
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] | |
assert num_new_tokens == 2 | |
if input_embeddings.shape == embed_tokens_weight.shape: | |
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] | |
elif embed_tokens_weight.shape[0] == num_new_tokens: | |
input_embeddings[-num_new_tokens:] = embed_tokens_weight | |
else: | |
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") | |
elif model_args.mm_use_im_patch_token: | |
if model_args.tune_mm_mlp_adapter: | |
for p in self.get_input_embeddings().parameters(): | |
p.requires_grad = False | |
for p in self.get_output_embeddings().parameters(): | |
p.requires_grad = False | |