blip-3o / app.py
jiuhai's picture
Update app.py
e8f05e4 verified
import os
import sys
import subprocess
subprocess.check_call([sys.executable, "-m", "pip", "uninstall", "-y", "deepspeed"])
import random
import spaces
import numpy as np
import torch
from PIL import Image
import gradio as gr
from diffusers import DiffusionPipeline
from blip3o.conversation import conv_templates
from blip3o.model.builder import load_pretrained_model
from blip3o.utils import disable_torch_init
from blip3o.mm_utils import get_model_name_from_path
from qwen_vl_utils import process_vision_info
from huggingface_hub import snapshot_download
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
# Constants
MAX_SEED = 10000
HUB_MODEL_ID = "BLIP3o/BLIP3o-Model-8B"
model_snapshot_path = snapshot_download(repo_id=HUB_MODEL_ID)
diffusion_path = os.path.join(model_snapshot_path, "diffusion-decoder")
def set_global_seed(seed: int = 42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def add_template(prompt_list: list[str]) -> str:
conv = conv_templates['qwen'].copy()
conv.append_message(conv.roles[0], prompt_list[0])
conv.append_message(conv.roles[1], None)
return conv.get_prompt()
def make_prompt(text: str) -> list[str]:
raw = f"Please generate image based on the following caption: {text}"
return [add_template([raw])]
def randomize_seed_fn(seed: int, randomize: bool) -> int:
return random.randint(0, MAX_SEED) if randomize else seed
@spaces.GPU
def generate_image(prompt: str, final_seed: int, guidance_scale: float, images_to_generate: int, progress: gr.Progress = gr.Progress(track_tqdm=True)) -> list[Image.Image]:
set_global_seed(final_seed)
formatted = make_prompt(prompt)
images = []
for _ in range(images_to_generate):
out = pipe(formatted, guidance_scale=guidance_scale)
images.append(out.image)
return images
@spaces.GPU
def process_image(prompt: str, img: Image.Image, progress: gr.Progress = gr.Progress(track_tqdm=True)) -> str:
messages = [{
"role": "user",
"content": [
{"type": "image", "image": img},
{"type": "text", "text": prompt},
],
}]
# print(messages) # Kept original print for debugging if needed
text_prompt_for_qwen = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text_prompt_for_qwen],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to('cuda')
generated_ids = multi_model.generate(**inputs, max_new_tokens=1024)
input_token_len = inputs.input_ids.shape[1]
generated_ids_trimmed = generated_ids[:, input_token_len:]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
return output_text
print("Diffusion path: ", diffusion_path)
# Initialize model + pipeline
disable_torch_init()
tokenizer, multi_model, _ = load_pretrained_model(
model_snapshot_path, None, get_model_name_from_path(model_snapshot_path)
)
pipe = DiffusionPipeline.from_pretrained(
diffusion_path,
custom_pipeline="pipeline_llava_gen",
torch_dtype=torch.bfloat16,
use_safetensors=True,
variant="bf16",
multimodal_encoder=multi_model,
tokenizer=tokenizer,
safety_checker=None
)
pipe.vae.to('cuda')
pipe.unet.to('cuda')
# Gradio UI
with gr.Blocks(title="BLIP3-o") as demo:
gr.Markdown('''# BLIP3-o
A fully open source unified model for both image understanding and generation, check our Github: https://github.com/JiuhaiChen/BLIP3o and Paper: https://arxiv.org/abs/2505.09568
''')
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Text → Image (Image Generation)"):
prompt_gen_input = gr.Textbox(
label="Prompt",
placeholder="Describe the image you want...",
lines=1
)
seed_slider = gr.Slider(
label="Seed",
minimum=0, maximum=int(MAX_SEED),
step=1, value=42
)
randomize_checkbox = gr.Checkbox(
label="Randomize seed", value=False
)
guidance_slider = gr.Slider(
label="Guidance Scale",
minimum=1.0, maximum=30.0,
step=0.5, value=3.0
)
images_to_generate = gr.Slider(
label="Number of images",
minimum=1, maximum=4,
step=1, value=4
)
run_image_gen_btn = gr.Button("Generate Image")
text_gen_examples_data = [
["A cute cat."],
["A young woman with freckles wearing a straw hat, standing in a golden wheat field."],
["A group of friends having a picnic in the park."]
]
gr.Examples(
examples=text_gen_examples_data,
inputs=[prompt_gen_input],
cache_examples=False, # As per original
label="Image Generation Examples"
)
with gr.TabItem("Image → Text (Image Understanding)"):
image_understand_input = gr.Image(label="Input Image", type="pil")
prompt_understand_input = gr.Textbox(
label="Question about image",
placeholder="Describe what you want to know about the image (e.g., What is in this image?)",
lines=1
)
run_image_understand_btn = gr.Button("Understand Image")
image_understanding_examples_data = [
["animal-compare.png", "Are these two pictures showing the same kind of animal?"],
["funny_image.jpeg", "Why is this image funny?"],
["animal-compare.png", "Describe this image in detail."],
]
gr.Examples(
examples=image_understanding_examples_data,
inputs=[image_understand_input, prompt_understand_input],
cache_examples=False, # As per original
label="Image Understanding Examples"
)
clean_btn = gr.Button("Clear All Inputs/Outputs")
with gr.Column():
output_gallery = gr.Gallery(label="Generated Images", columns=2, visible=True) # Default to visible, content will control
output_text = gr.Textbox(label="Generated Text", visible=False, lines=5, interactive=False)
@spaces.GPU
def run_generate_image_tab(prompt, seed, guidance, num_images, progress=gr.Progress(track_tqdm=True)):
# Seed is already finalized by the randomize_seed_fn in the click chain
imgs = generate_image(prompt, seed, guidance, num_images, progress=progress)
return (
gr.update(value=imgs, visible=True),
gr.update(value="", visible=False)
)
@spaces.GPU
def run_process_image_tab(img, prompt, progress=gr.Progress(track_tqdm=True)):
if img is None:
return (
gr.update(value=[], visible=False),
gr.update(value="Please upload an image for understanding.", visible=True)
)
txt = process_image(prompt, img, progress=progress)
return (
gr.update(value=[], visible=False),
gr.update(value=txt, visible=True)
)
def clean_all_fn():
return (
# Tab 1 inputs
gr.update(value=""), # prompt_gen_input
gr.update(value=42), # seed_slider
gr.update(value=False), # randomize_checkbox
gr.update(value=3.0), # guidance_slider
# Tab 2 inputs
gr.update(value=None), # image_understand_input
gr.update(value=""), # prompt_understand_input
# Outputs
gr.update(value=[], visible=True), # output_gallery (reset and keep visible for next gen)
gr.update(value="", visible=False) # output_text (reset and hide)
)
gen_inputs = [prompt_gen_input, seed_slider, guidance_slider, images_to_generate]
run_image_gen_btn.click(
fn=randomize_seed_fn,
inputs=[seed_slider, randomize_checkbox],
outputs=[seed_slider]
).then(
fn=run_generate_image_tab,
inputs=gen_inputs, # prompt_gen_input, seed_slider (updated), guidance_slider
outputs=[output_gallery, output_text]
)
prompt_gen_input.submit(
fn=randomize_seed_fn,
inputs=[seed_slider, randomize_checkbox],
outputs=[seed_slider]
).then(
fn=run_generate_image_tab,
inputs=gen_inputs,
outputs=[output_gallery, output_text]
)
# Event listeners for Image -> Text
understand_inputs = [image_understand_input, prompt_understand_input]
run_image_understand_btn.click(
fn=run_process_image_tab,
inputs=understand_inputs,
outputs=[output_gallery, output_text]
)
prompt_understand_input.submit(
fn=run_process_image_tab,
inputs=understand_inputs,
outputs=[output_gallery, output_text]
)
clean_btn.click(
fn=clean_all_fn,
inputs=[],
outputs=[
prompt_gen_input, seed_slider, randomize_checkbox, guidance_slider,
image_understand_input, prompt_understand_input,
output_gallery, output_text
]
)
if __name__ == "__main__":
demo.launch(share=True)