jayebaku's picture
Update app.py
e5996e7 verified
raw
history blame
5.09 kB
import os
import time
import gradio as gr
import pandas as pd
from classifier import classify
from statistics import mean
HFTOKEN = os.environ["HF_TOKEN"]
def load_and_analyze_csv(file, text_field, event_model):
df = pd.read_table(file.name)
if text_field not in df.columns:
raise gr.Error(f"Error: Enter text column'{text_field}' not in CSV file.")
floods, fires, nones, scores = [], [], [], []
for post in df[text_field].to_list():
res = classify(post, event_model, HFTOKEN)
if res["event"] == 'flood':
floods.append(post)
elif res["event"] == 'fire':
fires.append(post)
else:
nones.append(post)
scores.append(res["score"])
model_confidence = round(mean(scores), 5)
fire_related = gr.CheckboxGroup(choices=fires)
flood_related = gr.CheckboxGroup(choices=floods)
not_related = gr.CheckboxGroup(choices=nones)
return flood_related, fire_related, not_related, model_confidence
def analyze_selected_texts(selections):
selected_texts = selections
analysis_results = [f"Word Count: {len(text.split())}" for text in selected_texts]
result_df = pd.DataFrame({"Selected Text": selected_texts, "Analysis": analysis_results})
return result_df
with gr.Blocks() as demo:
event_models = ["jayebaku/distilbert-base-multilingual-cased-crexdata-relevance-classifier"]
with gr.Tab("Event Type Classification"):
gr.Markdown(
"""
# T4.5 Relevance Classifier Demo
This is a demo created to explore floods and wildfire classification in social media posts.\n
Usage:\n
\tUpload .tsv data file (must contain a text column with social media posts).\n
\tNext, type the name of the text column.\n
\tThen, choose a BERT classifier model from the drop down.\n
\tFinally, click the 'start classification' buttton.\n
Evaluation:\n
\tTo evaluate the model's accuracy select the INCORRECT classifications using the checkboxes in front of each post.\n
\tThen, click on the 'Calculate Accuracy' button.\n
\tThen, click on the 'Download data as CSV' to get the classifications and evaluation data as a .csv file.
""")
with gr.Row(equal_height=True):
with gr.Column(scale=4):
file_input = gr.File(label="Upload CSV File")
with gr.Column(scale=6):
text_field = gr.Textbox(label="Text field name", value="tweet_text")
event_model = gr.Dropdown(event_models, label="Select classification model")
predict_button = gr.Button("Start Prediction")
with gr.Row(): # XXX confirm this is not a problem later --equal_height=True
with gr.Column():
gr.Markdown("""### Flood-related""")
flood_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications", interactive=True)
with gr.Column():
gr.Markdown("""### Fire-related""")
fire_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications", interactive=True)
with gr.Column():
gr.Markdown("""### None""")
none_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications", interactive=True)
model_confidence = gr.Number(label="Model Confidence")
predict_button.click(load_and_analyze_csv, inputs=[file_input, text_field, event_model],
outputs=[flood_checkbox_output, fire_checkbox_output, none_checkbox_output, model_confidence])
with gr.Row(equal_height=True):
with gr.Column(scale=6):
gr.Markdown(r"""
Accuracy: is the model's ability to make correct predicitons.
It is the fraction of correct prediction out of the total predictions.
$
\text{Accuracy} = \frac{\text{Correct predictions}}{\text{All predictions}} * 100
$
Model Confidence: is the mean probabilty of each case
belonging to their assigned classes. A value of 1 is best.
""", latex_delimiters=[{ "left": "$", "right": "$", "display": True }])
with gr.Column(scale=4):
correct = gr.Number(label="Number of correct classifications", value=0)
incorrect = gr.Number(label="Number of incorrect classifications", value=0)
accuracy = gr.Number(label="Model Accuracy", value=0)
with gr.Tab("Question Answering"):
# XXX Add some button disabling here, if the classification process is not completed first XXX
analysis_button = gr.Button("Analyze Selected Texts")
analysis_output = gr.DataFrame(headers=["Selected Text", "Analysis"])
analysis_button.click(analyze_selected_texts, inputs=flood_checkbox_output, outputs=analysis_output)
demo.launch()