jayebaku commited on
Commit
e5996e7
·
verified ·
1 Parent(s): 8ce9236

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -16
app.py CHANGED
@@ -51,14 +51,14 @@ with gr.Blocks() as demo:
51
  # T4.5 Relevance Classifier Demo
52
  This is a demo created to explore floods and wildfire classification in social media posts.\n
53
  Usage:\n
54
- - Upload .tsv data file (must contain a text column with social media posts).\n
55
- - Next, type the name of the text column.\n
56
- - Then, choose a BERT classifier model from the drop down.\n
57
- - Finally, click the 'start classification' buttton.\n
58
  Evaluation:\n
59
- - To evaluate the model's accuracy select the INCORRECT classifications using the checkboxes in front of each post.\n
60
- - Then, click on the 'Calculate Accuracy' button.\n
61
- - Then, click on the 'Download data as CSV' to get the classifications and evaluation data as a .csv file.
62
  """)
63
  with gr.Row(equal_height=True):
64
  with gr.Column(scale=4):
@@ -86,15 +86,21 @@ with gr.Blocks() as demo:
86
  predict_button.click(load_and_analyze_csv, inputs=[file_input, text_field, event_model],
87
  outputs=[flood_checkbox_output, fire_checkbox_output, none_checkbox_output, model_confidence])
88
 
89
- gr.Markdown(r"""
90
- Accuracy: is the model's ability to make correct predicitons.
91
- It is the fraction of correct prediction out of the total predictions.
92
- $
93
- \text{Accuracy} = \frac{\text{Correct predictions}}{\text{All predictions}} * 100
94
- $
95
- Model Confidence: is the mean probabilty of each case
96
- belonging to their assigned classes. A value of 1 is best.
97
- """, latex_delimiters=[{ "left": "$", "right": "$", "display": True }])
 
 
 
 
 
 
98
 
99
  with gr.Tab("Question Answering"):
100
  # XXX Add some button disabling here, if the classification process is not completed first XXX
 
51
  # T4.5 Relevance Classifier Demo
52
  This is a demo created to explore floods and wildfire classification in social media posts.\n
53
  Usage:\n
54
+ \tUpload .tsv data file (must contain a text column with social media posts).\n
55
+ \tNext, type the name of the text column.\n
56
+ \tThen, choose a BERT classifier model from the drop down.\n
57
+ \tFinally, click the 'start classification' buttton.\n
58
  Evaluation:\n
59
+ \tTo evaluate the model's accuracy select the INCORRECT classifications using the checkboxes in front of each post.\n
60
+ \tThen, click on the 'Calculate Accuracy' button.\n
61
+ \tThen, click on the 'Download data as CSV' to get the classifications and evaluation data as a .csv file.
62
  """)
63
  with gr.Row(equal_height=True):
64
  with gr.Column(scale=4):
 
86
  predict_button.click(load_and_analyze_csv, inputs=[file_input, text_field, event_model],
87
  outputs=[flood_checkbox_output, fire_checkbox_output, none_checkbox_output, model_confidence])
88
 
89
+ with gr.Row(equal_height=True):
90
+ with gr.Column(scale=6):
91
+ gr.Markdown(r"""
92
+ Accuracy: is the model's ability to make correct predicitons.
93
+ It is the fraction of correct prediction out of the total predictions.
94
+ $
95
+ \text{Accuracy} = \frac{\text{Correct predictions}}{\text{All predictions}} * 100
96
+ $
97
+ Model Confidence: is the mean probabilty of each case
98
+ belonging to their assigned classes. A value of 1 is best.
99
+ """, latex_delimiters=[{ "left": "$", "right": "$", "display": True }])
100
+ with gr.Column(scale=4):
101
+ correct = gr.Number(label="Number of correct classifications", value=0)
102
+ incorrect = gr.Number(label="Number of incorrect classifications", value=0)
103
+ accuracy = gr.Number(label="Model Accuracy", value=0)
104
 
105
  with gr.Tab("Question Answering"):
106
  # XXX Add some button disabling here, if the classification process is not completed first XXX