File size: 1,973 Bytes
3b5b74a 97e5eed 3b5b74a 0040eab 97e5eed 07a3e99 dcaa8f7 a36c1b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import gradio as gr
import openai
# OpenAI API Key (यहाँ अपनी API Key डालें)
openai.api_key = "YOUR_API_KEY"
# Backend Function: यूजर का मैसेज लेकर OpenAI से रिस्पॉन्स लाता है
def respond_to_message(message, chat_history):
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": message}]
)
bot_message = response.choices[0].message['content']
chat_history.append((message, bot_message))
return "", chat_history
# Frontend: Gradio UI
with gr.Blocks() as demo:
chatbot = gr.Chatbot(label="AI चैट बोर्ड")
msg = gr.Textbox(label="आपका मैसेज")
clear = gr.ClearButton([msg, chatbot])
msg.submit(respond_to_message, [msg, chatbot], [msg, chatbot])
demo.launch()
from datasets import load_dataset
# Login using e.g. `huggingface-cli login` to access this dataset
ds = load_dataset("KadamParth/NCERT_Chemistry_11th")
from transformers import OpenAIGPTTokenizer, TFOpenAIGPTModel
tokenizer = OpenAIGPTTokenizer.from_pretrained("openai-community/openai-gpt")
model = TFOpenAIGPTModel.from_pretrained("openai-community/openai-gpt")
from transformers import OpenAIGPTTokenizer
import pandas as pd
# Dataset load karo (CSV, TXT, etc.)
df = pd.read_csv("your_dataset.csv") # ya pd.read_table("your_dataset.txt", sep="\t")
# Tokenizer load karo (optional, agar similarity check karna hai)
tokenizer = OpenAIGPTTokenizer.from_pretrained("openai-community/openai-gpt")
# Question poochhein
question = "रासायनिक बंध क्या होता है?"
# Simple keyword-based search
def get_answer(question):
for idx, row in df.iterrows():
if question.lower() in row['question'].lower():
return row['answer']
return "जवाब नहीं मिला।"
answer = get_answer(question)
print(answer)
|