Baraaqasem's picture
Upload 49 files
413d4d0 verified
import math
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
def nonlinearity(x):
return x * torch.sigmoid(x)
def Normalize(in_channels):
return nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
class Upsample(nn.Module):
def __init__(self,
in_channels,
with_conv):
super().__init__()
self.with_conv = with_conv
if with_conv:
self.conv = nn.Conv2d(in_channels,
in_channels,
kernel_size=3,
stride=1,
padding=1)
def forward(self, x):
x = F.interpolate(x, scale_factor=2., mode="nearest")
if self.with_conv:
x = self.conv(x)
return x
class DownSample(nn.Module):
def __init__(self,
in_channels,
with_conv):
super().__init__()
self.with_conv = with_conv
if with_conv:
self.conv = nn.Conv2d(in_channels,
in_channels,
kernel_size=3,
stride=2,
padding=0)
def forward(self, x):
if self.with_conv:
pad = (0, 1, 0, 1)
x = F.pad(x, pad, mode='constant', value=0)
x = self.conv(x)
else:
x = F.avg_pool2d(x, kernel_size=2, stride=2)
return x
class ResidualDownSample(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.pooling_down_sampler = DownSample(in_channels, with_conv=False)
self.conv_down_sampler = DownSample(in_channels, with_conv=True)
def forward(self, x):
return self.pooling_down_sampler(x) + self.conv_down_sampler(x)
class ResnetBlock(nn.Module):
def __init__(self,
in_channels,
dropout,
out_channels=None,
conv_shortcut=False):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = Normalize(in_channels)
self.conv1 = nn.Conv2d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
self.norm2 = Normalize(out_channels)
self.dropout = nn.Dropout(dropout)
self.conv2 = nn.Conv2d(out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
if in_channels != out_channels:
if conv_shortcut:
self.conv_shortcut = nn.Conv2d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
else:
self.nin_shortcut = nn.Conv2d(in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, x):
h = x
h = self.norm1(h)
h = nonlinearity(h)
h = self.conv1(h)
h = self.norm2(h)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x + h
class AttnBlock(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.k = nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.v = nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.proj_out = nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
B, C, H, W = q.shape
q = q.reshape(B, C, -1)
q = q.permute(0, 2, 1) # (B, H*W, C)
k = k.reshape(B, C, -1) # (B, C, H*W)
w_ = torch.bmm(q, k) # (B, H*W, H*W)
w_ = w_ * C**(-0.5)
w_ = F.softmax(w_, dim=2)
v = v.reshape(B, C, -1) # (B, C, H*W)
w_ = w_.permute(0, 2, 1)
h_ = torch.bmm(v, w_)
h_ = h_.reshape(B, C, H, W)
h_ = self.proj_out(h_)
return x + h_
class Encoder(nn.Module):
def __init__(self,
in_channels=3,
out_channels=3,
z_channels=256,
channels=128,
num_res_blocks=0,
resolution=256,
attn_resolutions=[16],
resample_with_conv=True,
channels_mult=(1,2,4,8),
dropout=0.
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.z_channels = z_channels
self.channels = channels
self.num_resolutions = len(channels_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.conv_in = nn.Conv2d(in_channels,
channels,
kernel_size=3,
stride=1,
padding=1)
current_resolution = resolution
in_channels_mult = (1,) + tuple(channels_mult)
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = channels * in_channels_mult[i_level]
block_out = channels * channels_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(ResnetBlock(in_channels=block_in,
out_channels=block_out,
dropout=dropout))
block_in = block_out
if current_resolution in attn_resolutions:
attn.append(AttnBlock(block_in))
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = DownSample(block_in,
resample_with_conv)
current_resolution = current_resolution // 2
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
dropout=dropout)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
dropout=dropout)
# end
self.norm_out = Normalize(block_in)
self.conv_out = nn.Conv2d(block_in,
z_channels,
kernel_size=3,
stride=1,
padding=1)
def test_forward(self, x):
# downsample
import pdb
hs = [self.conv_in(x)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1])
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if i_level != self.num_resolutions - 1:
hs.append(self.down[i_level].downsample(hs[-1]))
return hs
def forward(self, x):
# downsample
hs = [self.conv_in(x)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1])
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if i_level != self.num_resolutions - 1:
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
h = hs[-1]
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class Decoder(nn.Module):
def __init__(self,
in_channels=3,
out_channels=3,
z_channels=256,
channels=128,
num_res_blocks=0,
resolution=256,
attn_resolutions=[16],
channels_mult=(1,2,4,8),
resample_with_conv=True,
dropout=0.
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.z_channels = z_channels
self.channels = channels
self.num_resolutions = len(channels_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
in_channels_mult = (1,) + tuple(channels_mult)
block_in = channels * channels_mult[self.num_resolutions - 1]
current_resolution = resolution // 2**(self.num_resolutions - 1)
self.z_shape = (1, z_channels, current_resolution, current_resolution)
# z to block_in
self.conv_in = nn.Conv2d(z_channels,
block_in,
kernel_size=3,
stride=1,
padding=1)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
dropout=dropout)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
dropout=dropout)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = channels * channels_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(ResnetBlock(in_channels=block_in,
out_channels=block_out,
dropout=dropout))
block_in = block_out
if current_resolution in attn_resolutions:
attn.append(AttnBlock(block_in))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in,
resample_with_conv)
current_resolution = current_resolution * 2
self.up.insert(0, up)
# end
self.norm_out = Normalize(block_in)
self.conv_out = nn.Conv2d(block_in,
out_channels,
kernel_size=3,
stride=1,
padding=1)
def forward(self, z):
self.last_z_shape = z.shape
# z to block_in
h = self.conv_in(z)
# middle
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
def get_last_layer(self):
return self.conv_out.weight