Berry18 commited on
Commit
8a6abed
·
verified ·
1 Parent(s): 4988d06

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +206 -0
app.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import requests
4
+ import inspect
5
+ import pandas as pd
6
+
7
+ from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
8
+ from llama_index.core.agent.workflow import AgentWorkflow
9
+ from llama_index.core.tools import FunctionTool
10
+
11
+ # --- Constants ---
12
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
13
+
14
+ # --- Basic Agent Definition ---
15
+ # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
16
+ class BasicAgent:
17
+ def __init__(self ):
18
+ llm = HuggingFaceInferenceAPI(model_name="Qwen/Qwen2.5-Coder-32B-Instruct")
19
+ self.agent = AgentWorkflow.from_tools_or_functions(
20
+ [FunctionTool.from_defaults(multiply)],
21
+ llm=llm
22
+ )
23
+ def __call__(self, question: str) -> str:
24
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
25
+ response = self.agent.run(question)
26
+ return str(response)
27
+
28
+ def multiply(a: int, b: int) -> int:
29
+ """Multiplies two integers and returns the resulting integer"""
30
+ return a * b
31
+
32
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
33
+ """
34
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
35
+ and displays the results.
36
+ """
37
+ # --- Determine HF Space Runtime URL and Repo URL ---
38
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
39
+
40
+ if profile:
41
+ username= f"{profile.username}"
42
+ print(f"User logged in: {username}")
43
+ else:
44
+ print("User not logged in.")
45
+ return "Please Login to Hugging Face with the button.", None
46
+
47
+ api_url = DEFAULT_API_URL
48
+ questions_url = f"{api_url}/questions"
49
+ submit_url = f"{api_url}/submit"
50
+
51
+ # 1. Instantiate Agent ( modify this part to create your agent)
52
+ try:
53
+ agent = BasicAgent()
54
+ except Exception as e:
55
+ print(f"Error instantiating agent: {e}")
56
+ return f"Error initializing agent: {e}", None
57
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
58
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
59
+ print(agent_code )
60
+
61
+ # 2. Fetch Questions
62
+ print(f"Fetching questions from: {questions_url}")
63
+ try:
64
+ response = requests.get(questions_url, timeout=15)
65
+ response.raise_for_status()
66
+ questions_data = response.json()
67
+ if not questions_data:
68
+ print("Fetched questions list is empty.")
69
+ return "Fetched questions list is empty or invalid format.", None
70
+ print(f"Fetched {len(questions_data)} questions.")
71
+ except requests.exceptions.RequestException as e:
72
+ print(f"Error fetching questions: {e}")
73
+ return f"Error fetching questions: {e}", None
74
+ except requests.exceptions.JSONDecodeError as e:
75
+ print(f"Error decoding JSON response from questions endpoint: {e}")
76
+ print(f"Response text: {response.text[:500]}")
77
+ return f"Error decoding server response for questions: {e}", None
78
+ except Exception as e:
79
+ print(f"An unexpected error occurred fetching questions: {e}")
80
+ return f"An unexpected error occurred fetching questions: {e}", None
81
+
82
+ # 3. Run your Agent
83
+ results_log = []
84
+ answers_payload = []
85
+ print(f"Running agent on {len(questions_data)} questions...")
86
+ for item in questions_data:
87
+ task_id = item.get("task_id")
88
+ question_text = item.get("question")
89
+ if not task_id or question_text is None:
90
+ print(f"Skipping item with missing task_id or question: {item}")
91
+ continue
92
+ try:
93
+ submitted_answer = agent(question_text)
94
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
95
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
96
+ except Exception as e:
97
+ print(f"Error running agent on task {task_id}: {e}")
98
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
99
+
100
+ if not answers_payload:
101
+ print("Agent did not produce any answers to submit.")
102
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
103
+
104
+ # 4. Prepare Submission
105
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
106
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user \'{username}\'..."
107
+ print(status_update)
108
+
109
+ # 5. Submit
110
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
111
+ try:
112
+ response = requests.post(submit_url, json=submission_data, timeout=60)
113
+ response.raise_for_status()
114
+ result_data = response.json()
115
+ final_status = (
116
+ f"Submission Successful!\n" +
117
+ f"User: {result_data.get(\'username\')}\n" +
118
+ f"Overall Score: {result_data.get(\'score\', \'N/A\')}% " +
119
+ f"({result_data.get(\'correct_count\', \'?\')}/{result_data.get(\'total_attempted\', \'?\')} correct)\n" +
120
+ f"Message: {result_data.get(\'message\', \'No message received.\')}"
121
+ )
122
+ print("Submission successful.")
123
+ results_df = pd.DataFrame(results_log)
124
+ return final_status, results_df
125
+ except requests.exceptions.HTTPError as e:
126
+ error_detail = f"Server responded with status {e.response.status_code}."
127
+ try:
128
+ error_json = e.response.json()
129
+ error_detail += f" Detail: {error_json.get(\'detail\', e.response.text)}"
130
+ except requests.exceptions.JSONDecodeError:
131
+ error_detail += f" Response: {e.response.text[:500]}"
132
+ status_message = f"Submission Failed: {error_detail}"
133
+ print(status_message)
134
+ results_df = pd.DataFrame(results_log)
135
+ return status_message, results_df
136
+ except requests.exceptions.Timeout:
137
+ status_message = "Submission Failed: The request timed out."
138
+ print(status_message)
139
+ results_df = pd.DataFrame(results_log)
140
+ return status_message, results_df
141
+ except requests.exceptions.RequestException as e:
142
+ status_message = f"Submission Failed: Network error - {e}"
143
+ print(status_message)
144
+ results_df = pd.DataFrame(results_log)
145
+ return status_message, results_df
146
+ except Exception as e:
147
+ status_message = f"An unexpected error occurred during submission: {e}"
148
+ print(status_message)
149
+ results_df = pd.DataFrame(results_log)
150
+ return status_message, results_df
151
+
152
+
153
+ # --- Build Gradio Interface using Blocks ---
154
+ with gr.Blocks() as demo:
155
+ gr.Markdown("# Basic Agent Evaluation Runner")
156
+ gr.Markdown(
157
+ """
158
+ **Instructions:**
159
+
160
+ 1. Please clone this space, then modify the code to define your agent\'s logic, the tools, the necessary packages, etc ...
161
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
162
+ 3. Click \'Run Evaluation & Submit All Answers\' to fetch questions, run your agent, submit answers, and see the score.
163
+
164
+ ---
165
+ **Disclaimers:**
166
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
167
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
168
+ """
169
+ )
170
+
171
+ gr.LoginButton()
172
+
173
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
174
+
175
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
176
+ # Removed max_rows=10 from DataFrame constructor
177
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
178
+
179
+ run_button.click(
180
+ fn=run_and_submit_all,
181
+ outputs=[status_output, results_table]
182
+ )
183
+
184
+ if __name__ == "__main__":
185
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
186
+ # Check for SPACE_HOST and SPACE_ID at startup for information
187
+ space_host_startup = os.getenv("SPACE_HOST")
188
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
189
+
190
+ if space_host_startup:
191
+ print(f"✅ SPACE_HOST found: {space_host_startup}")
192
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space" )
193
+ else:
194
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
195
+
196
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
197
+ print(f"✅ SPACE_ID found: {space_id_startup}")
198
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}" )
199
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main" )
200
+ else:
201
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
202
+
203
+ print("-"*(60 + len(" App Starting ")) + "\n")
204
+
205
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
206
+ demo.launch(debug=True, share=False)