File size: 48,842 Bytes
fbedb17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 |
import streamlit as st
import numpy as np
import cv2
from PIL import Image
from io import BytesIO
from ultralytics import YOLO
from datetime import datetime
from gtts import gTTS
import tempfile
import os
import base64
import ollama
import bcrypt
import sqlite3
import time
from deep_translator import GoogleTranslator
#from transformers import AutoTokenizer, AutoModelForCausalLM, AutoImageProcessor, pipeline
#import torch
#from huggingface_hub import from_pretrained_keras
import requests
# Database setup
conn = sqlite3.connect('users.db')
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS users
(id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT UNIQUE,
password_hash TEXT)''')
conn.commit()
# Password hashing and verification
def hash_password(password):
return bcrypt.hashpw(password.encode(), bcrypt.gensalt())
def verify_password(password, hashed_password):
return bcrypt.checkpw(password.encode(), hashed_password)
# Add a user
def add_user(username, password):
# Check if username already exists
c.execute("SELECT id FROM users WHERE username = ?", (username,))
result = c.fetchone()
if result:
return False # Username already exists
# Hash the password and insert the new user
password_hash = hash_password(password)
c.execute("INSERT INTO users (username, password_hash) VALUES (?, ?)",
(username, password_hash))
conn.commit()
return True
# Verify a user
def verify_user(username, password):
c.execute("SELECT password_hash FROM users WHERE username = ?", (username,))
result = c.fetchone()
if result:
return verify_password(password, result[0])
return False
# Login and logout
def login(username, password):
if not username or not password:
st.error("Username and password are required.")
return False
if verify_user(username, password):
st.session_state['authenticated'] = True
st.session_state['username'] = username
st.session_state['last_activity'] = time.time()
return True
st.error("Invalid username or password.")
return False
def logout():
st.session_state['authenticated'] = False
st.session_state['username'] = None
# Add this at the top of your file
def local_css():
st.markdown("""
<style>
.stButton>button {
width: 100%;
border-radius: 5px;
height: 3em;
margin-top: 10px;
}
.auth-container {
max-width: 400px;
margin: auto;
padding: 20px;
border-radius: 10px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
background-color: white;
}
.auth-title {
text-align: center;
font-size: 24px;
margin-bottom: 20px;
color: #1f1f1f;
}
.auth-subtitle {
text-align: center;
font-size: 16px;
margin-bottom: 20px;
color: #666;
}
.hero-section {
text-align: center;
padding: 40px 20px;
background: linear-gradient(to right, #4f46e5, #3b82f6);
color: white;
margin-bottom: 30px;
}
.feature-container {
max-width: 1200px;
margin: auto;
padding: 20px;
display: grid;
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
gap: 20px;
margin-bottom: 40px;
}
.feature-card {
background: white;
padding: 20px;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
transition: transform 0.3s ease, box-shadow 0.3s ease;
}
.feature-card:hover {
transform: scale(1.05);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
}
.feature-title {
color: #1f1f1f;
font-size: 18px;
margin-bottom: 10px;
font-weight: bold;
}
.feature-text {
color: #666;
font-size: 14px;
}
.divider {
text-align: center;
margin: 20px 0;
position: relative;
}
.divider:before {
content: "";
position: absolute;
top: 50%;
left: 0;
right: 0;
height: 1px;
background-color: #e0e0e0;
z-index: -1;
}
.divider span {
background-color: white;
padding: 0 10px;
color: #666;
font-size: 14px;
}
@keyframes typing {
0% {
width: 0;
}
50% {
width: 100%;
}
60% {
width: 100%;
}
100% {
width: 0;
}
}
@keyframes blink {
50% {
border-color: transparent;
}
}
.hero-title{
display: inline-block;
font-size: 2.5em;
white-space: nowrap;
overflow: hidden;
border-right: 2px solid white;
width: 0;
animation: typing 6s steps(40, end) infinite, blink 0.5s step-end infinite;
}
.hero-section {
text-align: center;
padding: 40px 20px;
background: linear-gradient(45deg, #4f46e5, #3b82f6);
background-size: 300% 300%;
animation: gradientShift 8s ease infinite;
color: white;
margin-bottom: 30px;
opacity: 0;
animation: fadeIn 2s ease-in-out forwards;
}
@keyframes fadeIn {
from {
opacity: 0;
}
to {
opacity: 1;
}
}
@keyframes gradientShift {
0% {
background-position: 0% 50%;
}
50% {
background-position: 100% 50%;
}
100% {
background-position: 0% 50%;
}
}
/*.feature-container {
display: flex;
justify-content: center;
align-items: center;
gap: 20px;
position: relative;
width: 100%;
height: 300px;
animation: rotate 20s linear infinite; /* Rotate the container */
}
.feature-card {
background: white;
padding: 20px;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
transition: transform 0.3s ease, box-shadow 0.3s ease;
flex-shrink: 0;
width: 250px;
}
.feature-card:hover {
transform: scale(1.1);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
}
@keyframes rotate {
from {
transform: rotate(0deg);
}
to {
transform: rotate(-360deg);
}
*/}
/*.feature-container {
display: flex;
justify-content: center;
align-items: center;
overflow: hidden;
position: relative;
width: 100%;
height: 300px;
}
.feature-track {
display: flex;
animation: circularMove 15s linear infinite;
}
.feature-card {
flex: 0 0 300px; /* Fixed width for each card */
margin: 0 20px;
background: white;
color: #333; /* Text color */
padding: 20px;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
text-align: center; /* Center-align the text */
overflow: hidden; /* Prevent overflow issues */
}
.feature-card h3 {
font-size: 1.2em;
margin-bottom: 10px;
text-align: center;
}
.feature-card p {
font-size: 0.9em;
line-height: 1.4;
text-align: center;
font-weight: bold;
}
.feature-card:hover {
transform: scale(1.1);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
}
@keyframes circularMove {
0% {
transform: translateX(0);
}
100% {
transform: translateX(-100%);
}
*/}
.feature-container {
display: flex;
justify-content: center;
align-items: center;
height: 400px;
perspective: 1000px;
perspective-origin: 50% 50%;
background: linear-gradient(to bottom, #1e293b, #0f172a); /* Dark blue gradient background */
overflow: hidden;
position: relative;
padding: 40px 0;
}
.feature-track {
position: relative;
width: 100%;
height: 100%;
display: flex;
transform-style: preserve-3d;
animation: carousel 15s linear infinite;
}
.feature-card {
position: absolute;
width: 300px;
padding: 50px;
background: white;
border-radius: 15px;
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.3); /* Enhanced shadow for better contrast */
backface-visibility: hidden;
transform-origin: center center;
transition: all 0.5s ease;
}
.feature-card h3 {
color: #1e293b;
font-size: 1.5em;
margin-bottom: 1rem;
font-weight: bold;
}
.feature-card p {
color: #475569;
line-height: 1.6;
}
/* Position and animate cards */
.feature-card:nth-child(1) {
transform: rotateY(0deg) translateZ(400px) translateX(0px);
}
.feature-card:nth-child(2) {
transform: rotateY(60deg) translateZ(400px) translateX(0px);
}
.feature-card:nth-child(3) {
transform: rotateY(120deg) translateZ(400px) translateX(0px);
}
.feature-card:nth-child(4) {
transform: rotateY(180deg) translateZ(400px) translateX(0px);
}
.feature-card:nth-child(5) {
transform: rotateY(240deg) translateZ(400px) translateX(0px);
}
.feature-card:nth-child(6) {
transform: rotateY(300deg) translateZ(400px) translateX(0px);
}
@keyframes carousel {
0% {
transform: translateZ(-400px) rotateY(0deg);
}
100% {
transform: translateZ(-400px) rotateY(-360deg);
}
}
/* Enhanced hover effect with glow */
.feature-card:hover {
transform: scale(1.1) translateZ(450px);
box-shadow: 0 8px 30px rgba(255, 255, 255, 0.1); /* Glowing effect */
z-index: 1;
}
/* Gradient overlays for depth effect */
.feature-container::before,
.feature-container::after {
content: '';
position: absolute;
width: 100%;
height: 100px;
z-index: 2;
pointer-events: none;
}
.feature-container::before {
top: 0;
background: linear-gradient(to bottom, #1e293b, rgba(30, 41, 59, 0));
}
.feature-container::after {
bottom: 0;
background: linear-gradient(to top, #1e293b, rgba(30, 41, 59, 0));
</style>
""", unsafe_allow_html=True)
# Check session expiry
if 'authenticated' in st.session_state and st.session_state['authenticated']:
if time.time() - st.session_state['last_activity'] > 1800: # 30 minutes
logout()
st.rerun()
st.session_state['last_activity'] = time.time()
# Initialize session state for registration form visibility
if 'show_register_form' not in st.session_state:
st.session_state['show_register_form'] = False
# Replace your login/registration section with this:
if 'authenticated' not in st.session_state or not st.session_state['authenticated']:
local_css()
# Landing page hero section
st.markdown("""
<div class="hero-section">
<h1 class="hero-title" style="font-size: 2.5em; margin-bottom: 20px;">Crop Disease Detection System</h1>
<p style="font-size: 1.2em; max-width: 800px; margin: 0 auto;">
An advanced AI-powered system that helps farmers and agricultural experts identify and manage crop diseases effectively
</p>
</div>
""", unsafe_allow_html=True)
# Features section using Streamlit columns
st.subheader("Key Features")
col1, col2, col3 = st.columns(3)
st.markdown("""
<div class="feature-container">
<div class="feature-track">
<div class="feature-card">
<h3>π Instant Detection</h3>
<p>Upload images of your crops and get immediate disease detection results using state-of-the-art AI technology.</p>
</div>
<div class="feature-card">
<h3>π‘ Expert Analysis</h3>
<p>Receive detailed analysis and recommendations from our plant pathology expert system.</p>
</div>
<div class="feature-card">
<h3>π Detailed Reports</h3>
<p>Generate comprehensive reports with treatment recommendations and preventive measures.</p>
</div>
<div class="feature-card">
<h3>π Instant Detection</h3>
<p>Upload images of your crops and get immediate disease detection results using state-of-the-art AI technology.</p>
</div>
<div class="feature-card">
<h3>π‘ Expert Analysis</h3>
<p>Receive detailed analysis and recommendations from our plant pathology expert system.</p>
</div>
<div class="feature-card">
<h3>π Detailed Reports</h3>
<p>Generate comprehensive reports with treatment recommendations and preventive measures.</p>
</div>
</div>
</div>
""", unsafe_allow_html=True)
# Crop carousel section
st.markdown("""
<div class="crop-carousel-container">
<div class="crop-carousel-track">
<div class="crop-card">
<img src="https://github.com/ROBERT-ADDO-ASANTE-DARKO/AI-powered-crop-disease-detection/blob/main/images/b034333ddcc732299d45abf753f3fa71f6ff48ffa3338bfecd615bc2.jpg?raw=true" alt="Crop 1">
<h4>Corn Leaf Blight</h4>
<p>Corn leaf blight is a fungal disease caused primarily by Exserohilum turcicum (Northern corn leaf blight) and Bipolaris maydis (Southern corn leaf blight).</p>
</div>
<div class="crop-card">
<img src="https://github.com/ROBERT-ADDO-ASANTE-DARKO/AI-powered-crop-disease-detection/blob/main/images/apple.jpg?raw=true" alt="Crop 2">
<h4>Apple Scab Leaf</h4>
<p>Apple scab is a fungal disease caused by Venturia inaequalis. It primarily affects apple and crabapple trees.</p>
</div>
<div class="crop-card">
<img src="https://github.com/ROBERT-ADDO-ASANTE-DARKO/AI-powered-crop-disease-detection/blob/main/images/tomato.jpg?raw=true" alt="Crop 3">
<h4>Tomato Leaf Late Blight</h4>
<p>Late blight of tomato is caused by the oomycete pathogen Phytophthora infestans. It is characterized by dark, water-soaked lesions on leaves, stems, and fruit.</p>
</div>
<div class="crop-card">
<img src="https://github.com/ROBERT-ADDO-ASANTE-DARKO/AI-powered-crop-disease-detection/blob/main/images/918d1d7a3dda5ce8fbdabf92e5bf38f104efd129ee09adcc6d1ad46c.jpg?raw=true" alt="Crop 4">
<h4>Tomato Leaf Yellow Virus</h4>
<p>Tomato leaf yellow virus (often referred to as Tomato yellow leaf curl virus, or TYLCV) is a viral disease transmitted by whiteflies. It causes yellowing and curling of tomato leaves.</p>
</div>
</div>
</div>
""", unsafe_allow_html=True)
st.markdown("""
<style>
.crop-carousel-container {
width: 100%;
max-width: 800px;
margin: auto;
overflow: hidden;
position: relative;
}
.crop-carousel-track {
display: flex;
animation: moveLeft 20s linear infinite; /* Move right to left */
}
.crop-card {
flex: 0 0 300px;
margin: 0 20px;
background: white;
color: #333;
padding: 20px;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
text-align: center;
overflow: hidden;
}
.crop-card img {
width: 100%;
height: 150px;
object-fit: cover;
border-radius: 10px;
margin-bottom: 10px;
}
.crop-card h4 {
font-size: 1.2em;
margin: 10px 0;
}
.crop-card p {
font-size: 0.9em;
line-height: 1.4;
color: #555;
}
@keyframes moveLeft {
0% {
transform: translateX(100%);
}
100% {
transform: translateX(-100%);
}
}
</style>
""", unsafe_allow_html=True)
# Add some spacing
st.markdown("<br>", unsafe_allow_html=True)
# Authentication container
st.markdown('<div class="auth-container">', unsafe_allow_html=True)
# Initialize password reset state
if 'show_reset_form' not in st.session_state:
st.session_state['show_reset_form'] = False
# Update password function
def update_password(username, new_password):
conn = sqlite3.connect('users.db')
c = conn.cursor()
# Check if username exists
c.execute("SELECT id FROM users WHERE username = ?", (username,))
if not c.fetchone():
return False
# Update password
password_hash = bcrypt.hashpw(new_password.encode(), bcrypt.gensalt())
c.execute("UPDATE users SET password_hash = ? WHERE username = ?",
(password_hash, username))
conn.commit()
conn.close()
return True
# Update the authentication container section
if not st.session_state.get('authenticated', False):
st.markdown('<div class="auth-container">', unsafe_allow_html=True)
# Reset Password Form
if st.session_state.get('show_reset_form', False):
st.markdown('<h1 class="auth-title">Reset Password</h1>', unsafe_allow_html=True)
st.markdown('<p class="auth-subtitle">Enter your username and new password</p>', unsafe_allow_html=True)
with st.form("reset_form"):
username = st.text_input("Username")
new_password = st.text_input("New Password", type="password")
confirm_password = st.text_input("Confirm Password", type="password")
submit = st.form_submit_button("Reset Password")
if submit:
if not username or not new_password or not confirm_password:
st.error("All fields are required.")
elif new_password != confirm_password:
st.error("Passwords do not match.")
elif update_password(username, new_password):
st.success("Password updated successfully!")
st.session_state['show_reset_form'] = False
time.sleep(1)
st.rerun()
else:
st.error("Username not found.")
if st.button("Back to Login"):
st.session_state['show_reset_form'] = False
st.rerun()
# Registration Form
elif st.session_state.get('show_register_form', False):
st.markdown('<h1 class="auth-title">Create Account</h1>', unsafe_allow_html=True)
st.markdown('<p class="auth-subtitle">Sign up to get started</p>', unsafe_allow_html=True)
with st.form("register_form"):
new_username = st.text_input("Username")
new_password = st.text_input("Password", type="password")
submit_button = st.form_submit_button("Create Account")
if submit_button:
if new_username and new_password:
if add_user(new_username, new_password):
st.success("Account created successfully!")
st.session_state['show_register_form'] = False
time.sleep(1)
st.rerun()
else:
st.error("Username already exists.")
else:
st.error("Username and password are required.")
st.markdown('<div class="divider"><span>OR</span></div>', unsafe_allow_html=True)
if st.button("Back to Login"):
st.session_state['show_register_form'] = False
st.rerun()
# Login Form (default)
else:
st.markdown('<h1 class="auth-title">Welcome Back</h1>', unsafe_allow_html=True)
st.markdown('<p class="auth-subtitle">Sign in to your account</p>', unsafe_allow_html=True)
with st.form("login_form"):
username = st.text_input("Username")
password = st.text_input("Password", type="password")
cols = st.columns([1, 1])
submit_button = cols[0].form_submit_button("Sign In")
forgot_password = cols[1].form_submit_button("Forgot Password?")
if submit_button:
if login(username, password):
st.success("Logged in successfully!")
time.sleep(1)
st.rerun()
elif forgot_password:
st.session_state['show_reset_form'] = True
st.rerun()
st.markdown('<div class="divider"><span>OR</span></div>', unsafe_allow_html=True)
if st.button("Create New Account"):
st.session_state['show_register_form'] = True
st.rerun()
st.markdown('</div>', unsafe_allow_html=True)
# Update the footer section (replace the existing footer with this)
st.markdown("""
<div style="background: linear-gradient(to right, #1e293b, #334155); color: white; padding: 40px 0; margin-top: 40px;">
<div style="max-width: 1200px; margin: auto; padding: 0 20px;">
<div style="display: flex; flex-wrap: wrap; justify-content: space-between; gap: 40px;">
<!-- About Section -->
<div style="flex: 1; min-width: 250px;">
<h3 style="color: #60a5fa; font-size: 1.5em; margin-bottom: 20px;">About Our Platform</h3>
<p style="color: #e2e8f0; line-height: 1.6; margin-bottom: 20px;">
Our AI-powered platform revolutionizes crop disease detection and management.
We combine cutting-edge technology with agricultural expertise to protect your crops
and maximize your yield.
</p>
</div>
<div style="flex: 1; min-width: 250px;">
<h3 style="color: #60a5fa; font-size: 1.5em; margin-bottom: 20px;">Key Features</h3>
<ul style="list-style: none; padding: 0; color: #e2e8f0;">
<li style="margin-bottom: 10px; display: flex; align-items: center;">
<span style="color: #60a5fa; margin-right: 10px;">β</span> Real-time Disease Detection
</li>
<li style="margin-bottom: 10px; display: flex; align-items: center;">
<span style="color: #60a5fa; margin-right: 10px;">β</span> Multi-language Support
</li>
<li style="margin-bottom: 10px; display: flex; align-items: center;">
<span style="color: #60a5fa; margin-right: 10px;">β</span> Expert Analysis Reports
</li>
<li style="margin-bottom: 10px; display: flex; align-items: center;">
<span style="color: #60a5fa; margin-right: 10px;">β</span> Treatment Recommendations
</li>
</ul>
</div>
<div style="flex: 1; min-width: 250px;">
<h3 style="color: #60a5fa; font-size: 1.5em; margin-bottom: 20px;">Contact Us</h3>
<p style="color: #e2e8f0; line-height: 1.6; margin-bottom: 10px;">
<span style="color: #60a5fa;">Email:</span> [email protected]
</p>
<p style="color: #e2e8f0; line-height: 1.6; margin-bottom: 20px;">
<span style="color: #60a5fa;">Phone:</span> +1 (234) 567-8900
</p>
<div style="display: flex; gap: 15px; margin-top: 20px;">
<a href="#" style="color: #60a5fa; text-decoration: none; font-size: 1.2em;">
<span>π±</span>
</a>
<a href="#" style="color: #60a5fa; text-decoration: none; font-size: 1.2em;">
<span>π¬</span>
</a>
<a href="#" style="color: #60a5fa; text-decoration: none; font-size: 1.2em;">
<span>π¨</span>
</a>
</div>
</div>
</div>
<div style="border-top: 1px solid #4b5563; margin-top: 40px; padding-top: 20px; text-align: center;">
<p style="color: #e2e8f0; font-size: 0.9em;">
Β© 2025 Crop Disease Detection System. All rights reserved.
</p>
<div style="margin-top: 10px;">
<a href="#" style="color: #e2e8f0; text-decoration: none; margin: 0 10px; font-size: 0.9em;">Privacy Policy</a>
<a href="#" style="color: #e2e8f0; text-decoration: none; margin: 0 10px; font-size: 0.9em;">Terms of Service</a>
<a href="#" style="color: #e2e8f0; text-decoration: none; margin: 0 10px; font-size: 0.9em;">FAQ</a>
</div>
</div>
</div>
</div>
""", unsafe_allow_html=True)
st.stop()
# Update database schema to include comments
def setup_feedback_db():
conn = sqlite3.connect('customer_feedback.db')
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS customer_feedback
(id INTEGER PRIMARY KEY AUTOINCREMENT,
question TEXT,
response TEXT,
feedback_type TEXT,
comment_type TEXT,
custom_comment TEXT,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
conn.commit()
return conn, c
def save_feedback(question, response, feedback_type, comment_type=None, custom_comment=None):
conn, c = setup_feedback_db()
try:
c.execute("""INSERT INTO customer_feedback
(question, response, feedback_type, comment_type, custom_comment)
VALUES (?, ?, ?, ?, ?)""",
(question, response, feedback_type, comment_type, custom_comment))
conn.commit()
return True
except Exception as e:
st.error(f"Error saving feedback: {e}")
return False
finally:
conn.close()
# Update the conversation display section
def display_feedback_buttons(file_id, index, question, response):
# Suggested comments
SUGGESTED_COMMENTS = [
"Inaccurate information",
"Unclear explanation",
"Missing details",
"Not relevant to question",
"Technical error",
"Other"
]
# Initialize session state for feedback if it doesn't exist
if f"feedback_{file_id}_{index}" not in st.session_state:
st.session_state[f"feedback_{file_id}_{index}"] = {
"feedback_type": None, # Stores "π" or "π"
"comment": None, # Stores the user's comment
"submitted": False # Tracks whether feedback has been submitted
}
col1, col2 = st.columns([1, 4])
with col1:
if st.button("π", key=f"helpful_{file_id}_{index}"):
# Save positive feedback immediately
save_feedback(question, response, "π")
st.success("Feedback saved!")
# Update session state to indicate feedback has been submitted
st.session_state[f"feedback_{file_id}_{index}"]["submitted"] = True
return
with col2:
if st.button("π", key=f"not_helpful_{file_id}_{index}"):
# Store the feedback type in session state
st.session_state[f"feedback_{file_id}_{index}"]["feedback_type"] = "π"
# Check if feedback_type is "π" before showing the comment input field
if st.session_state[f"feedback_{file_id}_{index}"].get("feedback_type") == "π":
# Display suggested comments in a dropdown menu
selected_comment = st.selectbox(
"What was the issue?",
options=SUGGESTED_COMMENTS,
key=f"suggested_comment_{file_id}_{index}"
)
# If the user selects "Other", allow them to provide a custom comment
custom_comment = None
if selected_comment == "Other":
custom_comment = st.text_area(
"Please describe the issue:",
key=f"custom_comment_{file_id}_{index}"
)
# Submit Feedback button
if st.button("Submit Feedback", key=f"submit_{file_id}_{index}"):
# Save feedback to the database
save_feedback(
question,
response,
st.session_state[f"feedback_{file_id}_{index}"]["feedback_type"],
custom_comment if selected_comment == "Other" else selected_comment
)
st.success("Thank you for your feedback!")
# Update session state to indicate feedback has been submitted
st.session_state[f"feedback_{file_id}_{index}"]["submitted"] = True
return
# Model configuration
SUPPORTED_MODELS = {
"llama3.2": {
"name": "llama3.2",
"system_prompt": "You are a helpful plant pathology expert assistant.",
"supports_vision": False
},
"llama3.1": {
"name": "llama3.1",
"system_prompt": "You are a helpful plant pathology expert assistant.",
"supports_vision": False
},
"llama2": {
"name": "llama2",
"system_prompt": "You are a helpful plant pathology expert assistant.",
"supports_vision": False
},
"llava": {
"name": "llava",
"system_prompt": "You are a helpful plant pathology expert assistant with vision capabilities.",
"supports_vision": True,
"vision_prompt": "Analyze the image and describe the diseases present."
},
"mistral": {
"name": "mistral",
"system_prompt": "You are a helpful plant pathology expert assistant.",
"supports_vision": False
},
"gemma": {
"name": "gemma",
"system_prompt": "You are a helpful plant pathology expert assistant.",
"supports_vision": False
},
"jyan1/paligemma-mix-224": {
"name": "jyan1/paligemma-mix-224",
"system_prompt": "You are a helpful plant pathology expert assistant.",
"supports_vision": True
}
}
# Initialize session state for conversation history if it doesn't exist
if 'conversation_history' not in st.session_state:
st.session_state.conversation_history = {}
# Load YOLOv8 model
yolo_model = YOLO("models/best.pt")
def preprocess_image(image, target_size=(224, 224)):
"""
Preprocess the image for vision-capable models.
"""
image = Image.fromarray(image)
image = image.resize(target_size)
return image
def text_to_speech(text, language='en'):
"""Convert text to speech using gTTS"""
try:
# Create temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio:
# Generate audio file
tts = gTTS(text=text, lang=language, slow=False)
tts.save(temp_audio.name)
# Read the audio file
with open(temp_audio.name, 'rb') as audio_file:
audio_bytes = audio_file.read()
# Clean up
os.unlink(temp_audio.name)
return audio_bytes
except Exception as e:
st.error(f"Error generating speech: {str(e)}")
return None
def check_ollama_connection():
try:
response = requests.get("http://localhost:11434")
return response.status_code == 200
except Exception as e:
return False
def generate_ollama_response(prompt, model_name="llama2", conversation_history=None, image_data=None):
try:
if model_name not in SUPPORTED_MODELS:
return f"Error: Model {model_name} is not supported."
model_config = SUPPORTED_MODELS[model_name]
# Build the messages array
messages = [
{
"role": "system",
"content": model_config["system_prompt"]
}
]
# Add conversation history
if conversation_history:
for entry in conversation_history:
if len(entry) >= 2: # Handle tuples with 2 or 3 values
question, response = entry[:2]
messages.extend([
{"role": "user", "content": question},
{"role": "assistant", "content": response}
])
# Handle vision models differently
if model_config["supports_vision"] and image_data is not None:
if isinstance(image_data, np.ndarray):
image = Image.fromarray(image_data)
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode()
messages.append({
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image", "image": img_str}
]
})
else:
messages.append({
"role": "user",
"content": prompt
})
# Make an API call to Ollama
api_url = "http://localhost:11434/api/generate" # Ollama API endpoint
payload = {
"model": model_config["name"],
"prompt": prompt, # Use the prompt directly
"stream": False # Set to True if you want streaming responses
}
# Send the request
response = requests.post(api_url, json=payload)
# Check for errors
if response.status_code != 200:
return f"Error: API request failed with status code {response.status_code}. Response: {response.text}"
# Parse the response
response_data = response.json()
# Check if the response contains the expected key
if "response" in response_data:
return response_data["response"]
else:
return f"Error: Unexpected response format: {response_data}"
except Exception as e:
return f"Error connecting to Ollama API: {str(e)}"
def generate_improved_description(detected_classes, class_names, user_text, image_details=None, conversation_history=None):
"""
Generate a more detailed and contextual description using Ollama
"""
detected_objects = [class_names[cls] for cls in detected_classes]
# Create base context about detected diseases
disease_context = f"Detected diseases: {', '.join(detected_objects)}"
# Different prompt structure for initial vs. follow-up questions
if not conversation_history:
base_prompt = f"""As an expert plant pathologist, analyze the following crop diseases detected in the image: {', '.join(detected_objects)}.
For each detected disease, provide a structured analysis following this format:
1. Disease Name: [Name]
- Pathogen: [Causative organism]
- Severity Level: [Based on visual symptoms]
- Key Symptoms:
* [Symptom 1]
* [Symptom 2]
- Economic Impact:
* [Brief description of potential crop losses]
- Treatment Options:
* Immediate actions: [Short-term solutions]
* Long-term management: [Preventive measures]
- Environmental Conditions:
* Favorable conditions for disease development
* Risk factors
2. Recommendations:
- Immediate Steps:
* [Action items for immediate control]
- Prevention Strategy:
* [Long-term prevention measures]
- Monitoring Protocol:
* [What to watch for]
Initial Question/Context: {user_text if user_text else "Provide a general analysis"}
"""
else:
base_prompt = f"""Context: {disease_context}
Previous conversation context has been provided above. Please address the following follow-up question while maintaining consistency with previous responses:
{user_text}
Provide a detailed response that builds upon the previous context and specifically addresses this question."""
# Get the selected model from session state or default to llama2
selected_model = st.session_state.get('selected_model', 'llama2')
return generate_ollama_response(
base_prompt,
model_name=selected_model,
conversation_history=conversation_history,
image_data=image_details.get("image_data") if image_details else None
)
def inference(image):
"""
Enhanced inference function with confidence scores and bounding box information
"""
results = yolo_model(image, conf=0.4)
infer = np.zeros(image.shape, dtype=np.uint8)
classes = dict()
names_infer = []
confidence_scores = []
bounding_boxes = []
for r in results:
infer = r.plot()
classes = r.names
names_infer = r.boxes.cls.tolist()
confidence_scores = r.boxes.conf.tolist()
bounding_boxes = r.boxes.xyxy.tolist()
return infer, names_infer, classes, confidence_scores, bounding_boxes
# Streamlit application
st.title("Interactive Crop Disease Detection and AnalysisπΎπΏπ₯¬βοΈ")
st.write(f"Welcome, {st.session_state['username']}!π")
# Logout button
if st.button("Logout"):
logout()
st.rerun()
# Add sidebar for configuration
with st.sidebar:
st.header("Settings")
selected_model = st.selectbox(
"Select LLM Model",
list(SUPPORTED_MODELS.keys()),
index=0, # Default to first model (bart-large-cnn)
help="Choose the Ollama model to use for analysis"
)
# Store the selected model in session state
st.session_state['selected_model'] = selected_model
if SUPPORTED_MODELS[selected_model]["supports_vision"]:
st.info("This model supports vision capabilities and can analyze images directly.")
confidence_threshold = st.slider("Detection Confidence Threshold", 0.0, 1.0, 0.4)
show_confidence = st.checkbox("Show Confidence Scores", value=True)
show_bbox = st.checkbox("Show Bounding Boxes", value=True)
# TTS Settings
st.header("Text-to-Speech Settings")
tts_enabled = st.checkbox("Enable Text-to-Speech", value=True)
if tts_enabled:
language = st.selectbox("Speech Language",
options=['en', 'es', 'fr', 'de'],
format_func=lambda x: {
'en': 'English',
'es': 'Spanish',
'fr': 'French',
'de': 'German'
}[x],
help="Select speech language")
# Add option to clear conversation history
if st.button("Clear All Conversations"):
st.session_state.conversation_history = {}
st.success("Conversation history cleared!")
# Language selection
language = st.selectbox(
"Select Language",
options=['en', 'es', 'fr', 'de'], # Add more languages as needed
format_func=lambda x: {
'en': 'English',
'es': 'Spanish',
'fr': 'French',
'de': 'German'
}[x],
help="Select your preferred language"
)
# Main content
uploaded_files = st.file_uploader("Upload images for disease detection", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
if uploaded_files:
for uploaded_file in uploaded_files:
file_id = uploaded_file.name
# Initialize conversation history for this image if it doesn't exist
if file_id not in st.session_state.conversation_history:
st.session_state.conversation_history[file_id] = []
st.header(f"Analysis for {file_id}")
# Create columns for side-by-side display
col1, col2 = st.columns(2)
# Process image
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
image = cv2.imdecode(file_bytes, 1)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Display original image
with col1:
st.subheader("Original Image")
st.image(image, use_container_width=True)
# Process and display results
with st.spinner("Processing image..."):
infer_image, classes_in_image, classes_in_dataset, confidences, boxes = inference(image)
with col2:
st.subheader("Detected Diseases")
st.image(infer_image, use_container_width=True)
# Display detection details
if show_confidence:
st.subheader("Detection Details")
for cls, conf in zip(classes_in_image, confidences):
st.write(f"- {classes_in_dataset[cls]}: {conf:.2%} confidence")
# Display conversation history
if st.session_state.conversation_history[file_id]:
st.subheader("Conversation History")
for i, entry in enumerate(st.session_state.conversation_history[file_id]):
question, response = entry[:2]
with st.expander(f"Q{i+1}: {question[:50]}...", expanded=False):
st.write("**Question:**", question)
st.write("**Response:**", response)
# Display feedback buttons and handle comment collection
display_feedback_buttons(file_id, i, question, response)
# Audio playback option
if tts_enabled:
if st.button("π Listen", key=f"listen_history_{file_id}_{i}"):
with st.spinner("Generating audio..."):
audio_bytes = text_to_speech(response, language)
if audio_bytes:
st.audio(audio_bytes, format='audio/mp3')
# User input for questions
st.subheader("Ask Questions")
user_text = st.text_area(
"Enter your question about the detected diseases:",
placeholder="Example: What are the best treatment options for these diseases? What preventive measures should I take?",
key=f"question_{file_id}"
)
def translate_text(text, target_lang='en'):
translator = GoogleTranslator(source='auto', target=target_lang)
return translator.translate(text)
# Use the async function in your Streamlit app
if st.button("Get Analysis", key=f"analyze_{file_id}"):
with st.spinner(f"Generating analysis using {selected_model}..."):
# Perform translation
translated_input = translate_text(user_text, target_lang='en')
st.write(f"Translated Input (to English): {translated_input}")
# Create detailed image information dictionary
image_details = {
"confidence_scores": confidences,
"bounding_boxes": boxes,
"image_dimensions": image.shape,
"image_data": image # Add the image data for vision models
}
# Generate response
response = generate_improved_description(
classes_in_image,
classes_in_dataset,
translated_input,
image_details,
st.session_state.conversation_history[file_id]
)
# Translate LLM response
translated_response = translate_text(response, target_lang=language)
# Add to conversation history and display the response
st.session_state.conversation_history[file_id].append((user_text, translated_response, None))
st.markdown("### Latest Response")
st.markdown(translated_response)
# Add audio playback option for the latest response
if tts_enabled:
col1, col2 = st.columns([1, 4])
with col1:
if st.button("π Listen", key=f"listen_latest_{file_id}"):
with st.spinner("Generating audio..."):
audio_bytes = text_to_speech(translated_response, language)
if audio_bytes:
st.audio(audio_bytes, format='audio/mp3')
# Export conversation
if st.button("Export Conversation", key=f"export_{file_id}"):
conversation_text = f"""
# Crop Disease Analysis Report
## Image Information
- Filename: {file_id}
- Analysis Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
## Detected Diseases
{', '.join([classes_in_dataset[cls] for cls in classes_in_image])}
## Conversation History
"""
for i, entry in enumerate(st.session_state.conversation_history[file_id]):
if len(entry) == 2: # Handle legacy entries
question, response = entry
feedback = "No feedback"
else:
question, response, feedback = entry
conversation_text += f"\n### Question {i+1}:\n{question}\n\n### Answer {i+1}:\n{response}\n\n### Feedback {i+1}:\n{feedback}\n"
st.download_button(
label="Download Conversation",
data=conversation_text,
file_name=f"disease_analysis_{file_id}.md",
mime="text/markdown"
)
# Add a footer with clear instructions
st.markdown("""
---
### How to Use
1. Upload one or more images of crops with potential diseases
2. View the detected diseases and their confidence scores
3. Ask questions about the diseases, treatments, or prevention
4. Use the π Listen button to hear the responses
5. View previous questions and answers in the conversation history
6. Export the entire conversation for future reference
7. Use the sidebar to adjust settings or clear conversation history
""") |