BhaskarChatBot / app.py
Bhaskar2611's picture
Update app.py
79a62a7 verified
raw
history blame
3.96 kB
# import os
# import gradio as gr
# from langchain.chat_models import ChatOpenAI
# from langchain.prompts import PromptTemplate
# from langchain.chains import LLMChain
# from langchain.memory import ConversationBufferMemory
# # Set OpenAI API Key
# OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
# # Define the template for the chatbot's response
# template = """You are a helpful assistant to answer all user queries.
# {chat_history}
# User: {user_message}
# Chatbot:"""
# # Define the prompt template
# prompt = PromptTemplate(
# input_variables=["chat_history", "user_message"],
# template=template
# )
# # Initialize conversation memory
# memory = ConversationBufferMemory(memory_key="chat_history")
# # Define the LLM chain with the ChatOpenAI model and conversation memory
# llm_chain = LLMChain(
# llm=ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"), # Use 'model' instead of 'model_name'
# prompt=prompt,
# verbose=True,
# memory=memory,
# )
# # Function to get chatbot response
# def get_text_response(user_message, history):
# response = llm_chain.predict(user_message=user_message)
# return response
# # Create a Gradio chat interface
# demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
# if __name__ == "__main__":
# demo.launch()
# import os
# import gradio as gr
# from langchain.chat_models import ChatOpenAI
# from langchain.schema import AIMessage, HumanMessage
# # Set OpenAI API Key
# os.environ["OPENAI_API_KEY"] = "sk-3_mJiR5z9Q3XN-D33cgrAIYGffmMvHfu5Je1U0CW1ZT3BlbkFJA2vfSvDqZAVUyHo2JIcU91XPiAq424OSS8ci29tWMA" # Replace with your key
# # Initialize the ChatOpenAI model
# llm = ChatOpenAI(temperature=1.0, model="gpt-3.5-turbo-0613")
# # Function to predict response
# def get_text_response(message, history=None):
# # Ensure history is a list
# if history is None:
# history = []
# # Convert the Gradio history format to LangChain message format
# history_langchain_format = []
# for human, ai in history:
# history_langchain_format.append(HumanMessage(content=human))
# history_langchain_format.append(AIMessage(content=ai))
# # Add the new user message to the history
# history_langchain_format.append(HumanMessage(content=message))
# # Get the model's response
# gpt_response = llm(history_langchain_format)
# # Append AI response to history
# history.append((message, gpt_response.content))
# # Return the response and updated history
# return gpt_response.content, history
# # Create a Gradio chat interface
# demo = gr.ChatInterface(
# fn=get_text_response,
# inputs=["text", "state"],
# outputs=["text", "state"]
# )
# if __name__ == "__main__":
# demo.launch()
import os # Import the os module
import time
import gradio as gr
from langchain_community.chat_models import ChatOpenAI # Updated import based on deprecation warning
from langchain.schema import AIMessage, HumanMessage
import openai
# Set your OpenAI API key
os.environ["OPENAI_API_KEY"] = "sk-3_mJiR5z9Q3XN-D33cgrAIYGffmMvHfu5Je1U0CW1ZT3BlbkFJA2vfSvDqZAVUyHo2JIcU91XPiAq424OSS8ci29tWMA" # Replace with your OpenAI key
# Initialize ChatOpenAI
llm = ChatOpenAI(temperature=1.0, model='gpt-3.5-turbo-0613')
def predict(message, history):
# Reformat history for LangChain
history_langchain_format = []
for human, ai in history:
history_langchain_format.append(HumanMessage(content=human))
history_langchain_format.append(AIMessage(content=ai))
# Add latest human message
history_langchain_format.append(HumanMessage(content=message))
# Get response from the model
gpt_response = llm(history_langchain_format)
# Return response
return gpt_response.content
# Using ChatInterface to create a chat-style UI
demo = gr.Interface(fn=predict, type="messages")
if __name__ == "__main__":
demo.launch()