Spaces:
Sleeping
Sleeping
# import os | |
# import gradio as gr | |
# from langchain.chat_models import ChatOpenAI | |
# from langchain.prompts import PromptTemplate | |
# from langchain.chains import LLMChain | |
# from langchain.memory import ConversationBufferMemory | |
# # Set OpenAI API Key | |
# OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') | |
# # Define the template for the chatbot's response | |
# template = """You are a helpful assistant to answer all user queries. | |
# {chat_history} | |
# User: {user_message} | |
# Chatbot:""" | |
# # Define the prompt template | |
# prompt = PromptTemplate( | |
# input_variables=["chat_history", "user_message"], | |
# template=template | |
# ) | |
# # Initialize conversation memory | |
# memory = ConversationBufferMemory(memory_key="chat_history") | |
# # Define the LLM chain with the ChatOpenAI model and conversation memory | |
# llm_chain = LLMChain( | |
# llm=ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"), # Use 'model' instead of 'model_name' | |
# prompt=prompt, | |
# verbose=True, | |
# memory=memory, | |
# ) | |
# # Function to get chatbot response | |
# def get_text_response(user_message, history): | |
# response = llm_chain.predict(user_message=user_message) | |
# return response | |
# # Create a Gradio chat interface | |
# demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text") | |
# if __name__ == "__main__": | |
# demo.launch() | |
# import os | |
# import gradio as gr | |
# from langchain.chat_models import ChatOpenAI | |
# from langchain.schema import AIMessage, HumanMessage | |
# # Set OpenAI API Key | |
# os.environ["OPENAI_API_KEY"] = "sk-3_mJiR5z9Q3XN-D33cgrAIYGffmMvHfu5Je1U0CW1ZT3BlbkFJA2vfSvDqZAVUyHo2JIcU91XPiAq424OSS8ci29tWMA" # Replace with your key | |
# # Initialize the ChatOpenAI model | |
# llm = ChatOpenAI(temperature=1.0, model="gpt-3.5-turbo-0613") | |
# # Function to predict response | |
# def get_text_response(message, history=None): | |
# # Ensure history is a list | |
# if history is None: | |
# history = [] | |
# # Convert the Gradio history format to LangChain message format | |
# history_langchain_format = [] | |
# for human, ai in history: | |
# history_langchain_format.append(HumanMessage(content=human)) | |
# history_langchain_format.append(AIMessage(content=ai)) | |
# # Add the new user message to the history | |
# history_langchain_format.append(HumanMessage(content=message)) | |
# # Get the model's response | |
# gpt_response = llm(history_langchain_format) | |
# # Append AI response to history | |
# history.append((message, gpt_response.content)) | |
# # Return the response and updated history | |
# return gpt_response.content, history | |
# # Create a Gradio chat interface | |
# demo = gr.ChatInterface( | |
# fn=get_text_response, | |
# inputs=["text", "state"], | |
# outputs=["text", "state"] | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
import os # Import the os module | |
import time | |
import gradio as gr | |
from langchain_community.chat_models import ChatOpenAI # Updated import based on deprecation warning | |
from langchain.schema import AIMessage, HumanMessage | |
import openai | |
# Set your OpenAI API key | |
os.environ["OPENAI_API_KEY"] = "sk-3_mJiR5z9Q3XN-D33cgrAIYGffmMvHfu5Je1U0CW1ZT3BlbkFJA2vfSvDqZAVUyHo2JIcU91XPiAq424OSS8ci29tWMA" # Replace with your OpenAI key | |
# Initialize ChatOpenAI | |
llm = ChatOpenAI(temperature=1.0, model='gpt-3.5-turbo-0613') | |
def predict(message, history): | |
# Reformat history for LangChain | |
history_langchain_format = [] | |
for human, ai in history: | |
history_langchain_format.append(HumanMessage(content=human)) | |
history_langchain_format.append(AIMessage(content=ai)) | |
# Add latest human message | |
history_langchain_format.append(HumanMessage(content=message)) | |
# Get response from the model | |
gpt_response = llm(history_langchain_format) | |
# Return response | |
return gpt_response.content | |
# Using ChatInterface to create a chat-style UI | |
demo = gr.Interface(fn=predict, type="messages") | |
if __name__ == "__main__": | |
demo.launch() | |