File size: 3,961 Bytes
0318caf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27992f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b60445
27992f6
cac8f0f
27992f6
d35c879
27992f6
 
d5a8216
27992f6
 
417a23b
27992f6
 
cac8f0f
 
 
 
744d8dc
27992f6
cac8f0f
27992f6
 
cac8f0f
27992f6
 
 
cac8f0f
27992f6
79a62a7
cac8f0f
d35c879
b307974
0318caf
4b46c96
417a23b
0d53d23
dda8f2a
d141979
25606a9
8f6ec4b
744d8dc
0b60445
378a7ec
 
27992f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# import os
# import gradio as gr
# from langchain.chat_models import ChatOpenAI
# from langchain.prompts import PromptTemplate
# from langchain.chains import LLMChain
# from langchain.memory import ConversationBufferMemory

# # Set OpenAI API Key
# OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')

# # Define the template for the chatbot's response
# template = """You are a helpful assistant to answer all user queries.
# {chat_history}
# User: {user_message}
# Chatbot:"""

# # Define the prompt template
# prompt = PromptTemplate(
#     input_variables=["chat_history", "user_message"], 
#     template=template
# )

# # Initialize conversation memory
# memory = ConversationBufferMemory(memory_key="chat_history")

# # Define the LLM chain with the ChatOpenAI model and conversation memory
# llm_chain = LLMChain(
#     llm=ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"),  # Use 'model' instead of 'model_name'
#     prompt=prompt,
#     verbose=True,
#     memory=memory,
# )

# # Function to get chatbot response
# def get_text_response(user_message, history):
#     response = llm_chain.predict(user_message=user_message)
#     return response

# # Create a Gradio chat interface
# demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")

# if __name__ == "__main__":
#     demo.launch()

# import os
# import gradio as gr
# from langchain.chat_models import ChatOpenAI
# from langchain.schema import AIMessage, HumanMessage

# # Set OpenAI API Key
# os.environ["OPENAI_API_KEY"] = "sk-3_mJiR5z9Q3XN-D33cgrAIYGffmMvHfu5Je1U0CW1ZT3BlbkFJA2vfSvDqZAVUyHo2JIcU91XPiAq424OSS8ci29tWMA"  # Replace with your key

# # Initialize the ChatOpenAI model
# llm = ChatOpenAI(temperature=1.0, model="gpt-3.5-turbo-0613")

# # Function to predict response
# def get_text_response(message, history=None):
#     # Ensure history is a list
#     if history is None:
#         history = []
    
#     # Convert the Gradio history format to LangChain message format
#     history_langchain_format = []
#     for human, ai in history:
#         history_langchain_format.append(HumanMessage(content=human))
#         history_langchain_format.append(AIMessage(content=ai))
    
#     # Add the new user message to the history
#     history_langchain_format.append(HumanMessage(content=message))

#     # Get the model's response
#     gpt_response = llm(history_langchain_format)

#     # Append AI response to history
#     history.append((message, gpt_response.content))

#     # Return the response and updated history
#     return gpt_response.content, history

# # Create a Gradio chat interface
# demo = gr.ChatInterface(
#     fn=get_text_response, 
#     inputs=["text", "state"], 
#     outputs=["text", "state"]
# )

# if __name__ == "__main__":
#     demo.launch()

import os  # Import the os module
import time
import gradio as gr
from langchain_community.chat_models import ChatOpenAI  # Updated import based on deprecation warning
from langchain.schema import AIMessage, HumanMessage
import openai

# Set your OpenAI API key
os.environ["OPENAI_API_KEY"] = "sk-3_mJiR5z9Q3XN-D33cgrAIYGffmMvHfu5Je1U0CW1ZT3BlbkFJA2vfSvDqZAVUyHo2JIcU91XPiAq424OSS8ci29tWMA"  # Replace with your OpenAI key

# Initialize ChatOpenAI
llm = ChatOpenAI(temperature=1.0, model='gpt-3.5-turbo-0613')

def predict(message, history):
    # Reformat history for LangChain
    history_langchain_format = []
    for human, ai in history:
        history_langchain_format.append(HumanMessage(content=human))
        history_langchain_format.append(AIMessage(content=ai))
    
    # Add latest human message
    history_langchain_format.append(HumanMessage(content=message))
    
    # Get response from the model
    gpt_response = llm(history_langchain_format)
    
    # Return response
    return gpt_response.content

# Using ChatInterface to create a chat-style UI
demo = gr.Interface(fn=predict, type="messages")

if __name__ == "__main__":
    demo.launch()