Bhaskar2611 commited on
Commit
27992f6
·
verified ·
1 Parent(s): 378a7ec

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +64 -28
app.py CHANGED
@@ -42,47 +42,82 @@
42
  # if __name__ == "__main__":
43
  # demo.launch()
44
 
45
- import os
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  import gradio as gr
47
- from langchain.chat_models import ChatOpenAI
48
  from langchain.schema import AIMessage, HumanMessage
 
49
 
50
- # Set OpenAI API Key
51
- os.environ["OPENAI_API_KEY"] = "sk-3_mJiR5z9Q3XN-D33cgrAIYGffmMvHfu5Je1U0CW1ZT3BlbkFJA2vfSvDqZAVUyHo2JIcU91XPiAq424OSS8ci29tWMA" # Replace with your key
52
 
53
- # Initialize the ChatOpenAI model
54
- llm = ChatOpenAI(temperature=1.0, model="gpt-3.5-turbo-0613")
55
 
56
- # Function to predict response
57
- def get_text_response(message, history=None):
58
- # Ensure history is a list
59
- if history is None:
60
- history = []
61
-
62
- # Convert the Gradio history format to LangChain message format
63
  history_langchain_format = []
64
  for human, ai in history:
65
  history_langchain_format.append(HumanMessage(content=human))
66
  history_langchain_format.append(AIMessage(content=ai))
67
 
68
- # Add the new user message to the history
69
  history_langchain_format.append(HumanMessage(content=message))
70
-
71
- # Get the model's response
72
  gpt_response = llm(history_langchain_format)
 
 
 
73
 
74
- # Append AI response to history
75
- history.append((message, gpt_response.content))
76
-
77
- # Return the response and updated history
78
- return gpt_response.content, history
79
-
80
- # Create a Gradio chat interface
81
- demo = gr.ChatInterface(
82
- fn=get_text_response,
83
- inputs=["text", "state"],
84
- outputs=["text", "state"]
85
- )
86
 
87
  if __name__ == "__main__":
88
  demo.launch()
@@ -98,3 +133,4 @@ if __name__ == "__main__":
98
 
99
 
100
 
 
 
42
  # if __name__ == "__main__":
43
  # demo.launch()
44
 
45
+ # import os
46
+ # import gradio as gr
47
+ # from langchain.chat_models import ChatOpenAI
48
+ # from langchain.schema import AIMessage, HumanMessage
49
+
50
+ # # Set OpenAI API Key
51
+ # os.environ["OPENAI_API_KEY"] = "sk-3_mJiR5z9Q3XN-D33cgrAIYGffmMvHfu5Je1U0CW1ZT3BlbkFJA2vfSvDqZAVUyHo2JIcU91XPiAq424OSS8ci29tWMA" # Replace with your key
52
+
53
+ # # Initialize the ChatOpenAI model
54
+ # llm = ChatOpenAI(temperature=1.0, model="gpt-3.5-turbo-0613")
55
+
56
+ # # Function to predict response
57
+ # def get_text_response(message, history=None):
58
+ # # Ensure history is a list
59
+ # if history is None:
60
+ # history = []
61
+
62
+ # # Convert the Gradio history format to LangChain message format
63
+ # history_langchain_format = []
64
+ # for human, ai in history:
65
+ # history_langchain_format.append(HumanMessage(content=human))
66
+ # history_langchain_format.append(AIMessage(content=ai))
67
+
68
+ # # Add the new user message to the history
69
+ # history_langchain_format.append(HumanMessage(content=message))
70
+
71
+ # # Get the model's response
72
+ # gpt_response = llm(history_langchain_format)
73
+
74
+ # # Append AI response to history
75
+ # history.append((message, gpt_response.content))
76
+
77
+ # # Return the response and updated history
78
+ # return gpt_response.content, history
79
+
80
+ # # Create a Gradio chat interface
81
+ # demo = gr.ChatInterface(
82
+ # fn=get_text_response,
83
+ # inputs=["text", "state"],
84
+ # outputs=["text", "state"]
85
+ # )
86
+
87
+ # if __name__ == "__main__":
88
+ # demo.launch()
89
+
90
+ import os # Import the os module
91
+ import time
92
  import gradio as gr
93
+ from langchain_community.chat_models import ChatOpenAI # Updated import based on deprecation warning
94
  from langchain.schema import AIMessage, HumanMessage
95
+ import openai
96
 
97
+ # Set your OpenAI API key
98
+ os.environ["OPENAI_API_KEY"] = "sk-3_mJiR5z9Q3XN-D33cgrAIYGffmMvHfu5Je1U0CW1ZT3BlbkFJA2vfSvDqZAVUyHo2JIcU91XPiAq424OSS8ci29tWMA" # Replace with your OpenAI key
99
 
100
+ # Initialize ChatOpenAI
101
+ llm = ChatOpenAI(temperature=1.0, model='gpt-3.5-turbo-0613')
102
 
103
+ def predict(message, history):
104
+ # Reformat history for LangChain
 
 
 
 
 
105
  history_langchain_format = []
106
  for human, ai in history:
107
  history_langchain_format.append(HumanMessage(content=human))
108
  history_langchain_format.append(AIMessage(content=ai))
109
 
110
+ # Add latest human message
111
  history_langchain_format.append(HumanMessage(content=message))
112
+
113
+ # Get response from the model
114
  gpt_response = llm(history_langchain_format)
115
+
116
+ # Return response
117
+ return gpt_response.content
118
 
119
+ # Using ChatInterface to create a chat-style UI
120
+ demo = gr.ChatInterface(fn=predict, type="messages")
 
 
 
 
 
 
 
 
 
 
121
 
122
  if __name__ == "__main__":
123
  demo.launch()
 
133
 
134
 
135
 
136
+