Bhaskar2611 commited on
Commit
dda8f2a
·
verified ·
1 Parent(s): 0d53d23

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +66 -14
app.py CHANGED
@@ -193,13 +193,65 @@
193
  # if __name__ == "__main__":
194
  # demo.launch()
195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
  import os
 
197
  import gradio as gr
 
 
 
 
198
  from langchain_openai import ChatOpenAI
199
  from langchain.prompts import PromptTemplate
 
200
  from langchain.memory import ConversationBufferMemory
201
- from langchain.schema import AIMessage, HumanMessage
202
- from langchain import Runnable # Using Runnable instead of RunnableSequence
203
 
204
  # Set OpenAI API Key
205
  OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
@@ -216,23 +268,22 @@ prompt = PromptTemplate(
216
  template=template
217
  )
218
 
219
- # Initialize conversation memory (following migration guide)
220
- memory = ConversationBufferMemory(return_messages=True) # Use return_messages=True for updated usage
221
-
222
- # Define the LLM (language model)
223
- llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
224
 
225
- # Create the Runnable instead of RunnableSequence
226
- llm_runnable = Runnable(lambda inputs: prompt.format(**inputs)) | llm
 
 
 
 
 
227
 
228
  # Function to get chatbot response
229
  def get_text_response(user_message, history):
230
  # Prepare the conversation history
231
- chat_history = [HumanMessage(content=user_message)]
232
-
233
- # Pass the prompt and history to the language model sequence
234
- response = llm_runnable.invoke({"chat_history": history, "user_message": user_message})
235
-
236
  return response
237
 
238
  # Create a Gradio chat interface
@@ -244,3 +295,4 @@ if __name__ == "__main__":
244
 
245
 
246
 
 
 
193
  # if __name__ == "__main__":
194
  # demo.launch()
195
 
196
+ # import os
197
+ # import gradio as gr
198
+ # from langchain_openai import ChatOpenAI
199
+ # from langchain.prompts import PromptTemplate
200
+ # from langchain.memory import ConversationBufferMemory
201
+ # from langchain.schema import AIMessage, HumanMessage
202
+ # from langchain import Runnable # Using Runnable instead of RunnableSequence
203
+
204
+ # # Set OpenAI API Key
205
+ # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
206
+
207
+ # # Define the template for the chatbot's response
208
+ # template = """You are a helpful assistant to answer all user queries.
209
+ # {chat_history}
210
+ # User: {user_message}
211
+ # Chatbot:"""
212
+
213
+ # # Define the prompt template
214
+ # prompt = PromptTemplate(
215
+ # input_variables=["chat_history", "user_message"],
216
+ # template=template
217
+ # )
218
+
219
+ # # Initialize conversation memory (following migration guide)
220
+ # memory = ConversationBufferMemory(return_messages=True) # Use return_messages=True for updated usage
221
+
222
+ # # Define the LLM (language model)
223
+ # llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
224
+
225
+ # # Create the Runnable instead of RunnableSequence
226
+ # llm_runnable = Runnable(lambda inputs: prompt.format(**inputs)) | llm
227
+
228
+ # # Function to get chatbot response
229
+ # def get_text_response(user_message, history):
230
+ # # Prepare the conversation history
231
+ # chat_history = [HumanMessage(content=user_message)]
232
+
233
+ # # Pass the prompt and history to the language model sequence
234
+ # response = llm_runnable.invoke({"chat_history": history, "user_message": user_message})
235
+
236
+ # return response
237
+
238
+ # # Create a Gradio chat interface
239
+ # demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
240
+
241
+ # if __name__ == "__main__":
242
+ # demo.launch()
243
+
244
  import os
245
+ import subprocess
246
  import gradio as gr
247
+
248
+ # Install necessary packages
249
+ subprocess.check_call(["pip", "install", "-U", "langchain-openai", "gradio", "langchain-community"])
250
+
251
  from langchain_openai import ChatOpenAI
252
  from langchain.prompts import PromptTemplate
253
+ from langchain.chains import LLMChain
254
  from langchain.memory import ConversationBufferMemory
 
 
255
 
256
  # Set OpenAI API Key
257
  OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
 
268
  template=template
269
  )
270
 
271
+ # Initialize conversation memory
272
+ memory = ConversationBufferMemory(memory_key="chat_history")
 
 
 
273
 
274
+ # Define the LLM chain with the ChatOpenAI model and conversation memory
275
+ llm_chain = LLMChain(
276
+ llm=ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"), # Use 'model' instead of 'model_name'
277
+ prompt=prompt,
278
+ verbose=True,
279
+ memory=memory,
280
+ )
281
 
282
  # Function to get chatbot response
283
  def get_text_response(user_message, history):
284
  # Prepare the conversation history
285
+ chat_history = history + [f"User: {user_message}"]
286
+ response = llm_chain.predict(user_message=user_message, chat_history=chat_history)
 
 
 
287
  return response
288
 
289
  # Create a Gradio chat interface
 
295
 
296
 
297
 
298
+