Bhaskar2611 commited on
Commit
0d53d23
·
verified ·
1 Parent(s): 417a23b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -4
app.py CHANGED
@@ -145,13 +145,61 @@
145
  # if __name__ == "__main__":
146
  # demo.launch()
147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148
  import os
149
  import gradio as gr
150
  from langchain_openai import ChatOpenAI
151
  from langchain.prompts import PromptTemplate
152
  from langchain.memory import ConversationBufferMemory
153
  from langchain.schema import AIMessage, HumanMessage
154
- from langchain.chains import RunnableSequence
155
 
156
  # Set OpenAI API Key
157
  OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
@@ -174,8 +222,8 @@ memory = ConversationBufferMemory(return_messages=True) # Use return_messages=T
174
  # Define the LLM (language model)
175
  llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
176
 
177
- # Create the RunnableSequence instead of LLMChain
178
- llm_sequence = prompt | llm # This pipelines the prompt into the language model
179
 
180
  # Function to get chatbot response
181
  def get_text_response(user_message, history):
@@ -183,7 +231,7 @@ def get_text_response(user_message, history):
183
  chat_history = [HumanMessage(content=user_message)]
184
 
185
  # Pass the prompt and history to the language model sequence
186
- response = llm_sequence.invoke({"chat_history": history, "user_message": user_message})
187
 
188
  return response
189
 
@@ -195,3 +243,4 @@ if __name__ == "__main__":
195
 
196
 
197
 
 
 
145
  # if __name__ == "__main__":
146
  # demo.launch()
147
 
148
+ # import os
149
+ # import gradio as gr
150
+ # from langchain_openai import ChatOpenAI
151
+ # from langchain.prompts import PromptTemplate
152
+ # from langchain.memory import ConversationBufferMemory
153
+ # from langchain.schema import AIMessage, HumanMessage
154
+ # from langchain.chains import RunnableSequence
155
+
156
+ # # Set OpenAI API Key
157
+ # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
158
+
159
+ # # Define the template for the chatbot's response
160
+ # template = """You are a helpful assistant to answer all user queries.
161
+ # {chat_history}
162
+ # User: {user_message}
163
+ # Chatbot:"""
164
+
165
+ # # Define the prompt template
166
+ # prompt = PromptTemplate(
167
+ # input_variables=["chat_history", "user_message"],
168
+ # template=template
169
+ # )
170
+
171
+ # # Initialize conversation memory (following migration guide)
172
+ # memory = ConversationBufferMemory(return_messages=True) # Use return_messages=True for updated usage
173
+
174
+ # # Define the LLM (language model)
175
+ # llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
176
+
177
+ # # Create the RunnableSequence instead of LLMChain
178
+ # llm_sequence = prompt | llm # This pipelines the prompt into the language model
179
+
180
+ # # Function to get chatbot response
181
+ # def get_text_response(user_message, history):
182
+ # # Prepare the conversation history
183
+ # chat_history = [HumanMessage(content=user_message)]
184
+
185
+ # # Pass the prompt and history to the language model sequence
186
+ # response = llm_sequence.invoke({"chat_history": history, "user_message": user_message})
187
+
188
+ # return response
189
+
190
+ # # Create a Gradio chat interface
191
+ # demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
192
+
193
+ # if __name__ == "__main__":
194
+ # demo.launch()
195
+
196
  import os
197
  import gradio as gr
198
  from langchain_openai import ChatOpenAI
199
  from langchain.prompts import PromptTemplate
200
  from langchain.memory import ConversationBufferMemory
201
  from langchain.schema import AIMessage, HumanMessage
202
+ from langchain import Runnable # Using Runnable instead of RunnableSequence
203
 
204
  # Set OpenAI API Key
205
  OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
 
222
  # Define the LLM (language model)
223
  llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
224
 
225
+ # Create the Runnable instead of RunnableSequence
226
+ llm_runnable = Runnable(lambda inputs: prompt.format(**inputs)) | llm
227
 
228
  # Function to get chatbot response
229
  def get_text_response(user_message, history):
 
231
  chat_history = [HumanMessage(content=user_message)]
232
 
233
  # Pass the prompt and history to the language model sequence
234
+ response = llm_runnable.invoke({"chat_history": history, "user_message": user_message})
235
 
236
  return response
237
 
 
243
 
244
 
245
 
246
+