Bhaskar2611 commited on
Commit
b307974
·
verified ·
1 Parent(s): 97de22a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -77
app.py CHANGED
@@ -1,84 +1,24 @@
1
- # import os
2
- # import gradio as gr
3
- # from langchain.chat_models import ChatOpenAI
4
- # from langchain import LLMChain, PromptTemplate
5
- # from langchain.memory import ConversationBufferMemory
6
  import os
 
7
  import gradio as gr
8
- from langchain.chat_models import ChatOpenAI
9
- from langchain.prompts import PromptTemplate
10
- from langchain.chains import LLMChain
11
- from langchain.memory import ConversationBufferMemory
12
 
13
- OPENAI_API_KEY=os.getenv('OPENAI_API_KEY')
 
 
14
 
15
- template = """You are a helpful assistant to answer all user queries.
16
- {chat_history}
17
- User: {user_message}
18
- Chatbot:"""
 
 
 
 
 
 
19
 
20
- prompt = PromptTemplate(
21
- input_variables=["chat_history", "user_message"], template=template
22
- )
23
-
24
- memory = ConversationBufferMemory(memory_key="chat_history")
25
-
26
- llm_chain = LLMChain(
27
- llm=ChatOpenAI(temperature='0.5', model_name="gpt-3.5-turbo"),
28
- prompt=prompt,
29
- verbose=True,
30
- memory=memory,
31
- )
32
-
33
- def get_text_response(user_message,history):
34
- response = llm_chain.predict(user_message = user_message)
35
- return response
36
-
37
- demo = gr.ChatInterface(get_text_response)
38
 
39
  if __name__ == "__main__":
40
- demo.launch() #To create a public link, set `share=True` in `launch()`. To enable errors and logs, set `debug=True` in `launch()`.
41
- # import os
42
- # import gradio as gr
43
- # from langchain.chat_models import ChatOpenAI
44
- # from langchain.prompts import PromptTemplate
45
- # from langchain.chains import LLMChain
46
- # from langchain.memory import ConversationBufferMemory
47
-
48
- # # Get API key from environment variable
49
- # OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
50
-
51
- # # Define the template for the chatbot's response
52
- # template = """You are a helpful assistant to answer all user queries.
53
- # {chat_history}
54
- # User: {user_message}
55
- # Chatbot:"""
56
-
57
- # # Define the prompt template
58
- # prompt = PromptTemplate(
59
- # input_variables=["chat_history", "user_message"],
60
- # template=template
61
- # )
62
-
63
- # # Initialize conversation memory
64
- # memory = ConversationBufferMemory(memory_key="chat_history")
65
-
66
- # # Define the LLM chain with the ChatOpenAI model and conversation memory
67
- # llm_chain = LLMChain(
68
- # llm=ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"), # Use 'model' instead of 'model_name'
69
- # prompt=prompt,
70
- # verbose=True,
71
- # memory=memory,
72
- # )
73
-
74
- # # Function to get chatbot response
75
- # def get_text_response(user_message, history):
76
- # response = llm_chain.predict(user_message=user_message)
77
- # return response
78
-
79
- # # Create a Gradio chat interface
80
- # demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
81
-
82
- # if __name__ == "__main__":
83
- # demo.launch()
84
-
 
 
 
 
 
 
1
  import os
2
+ import openai
3
  import gradio as gr
 
 
 
 
4
 
5
+ # Set OpenAI API Key
6
+ OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
7
+ openai.api_key = OPENAI_API_KEY
8
 
9
+ def get_text_response(user_message, history):
10
+ # Call OpenAI GPT model
11
+ response = openai.ChatCompletion.create(
12
+ model="gpt-3.5-turbo",
13
+ messages=[
14
+ {"role": "system", "content": "You are a helpful assistant."},
15
+ {"role": "user", "content": user_message},
16
+ ]
17
+ )
18
+ return response['choices'][0]['message']['content']
19
 
20
+ # Create a Gradio chat interface
21
+ demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
  if __name__ == "__main__":
24
+ demo.launch()