File size: 21,093 Bytes
eaef5b0
a765116
98ff03c
d448add
d3df06a
98ff03c
d3df06a
 
 
 
 
 
 
db46bfb
1c1b50f
 
db46bfb
1c1b50f
db8ba25
db46bfb
a8a7982
019c404
3168a3e
98ff03c
 
 
 
 
 
a8a7982
98ff03c
a8a7982
cf3593c
3e34a93
98ff03c
 
 
 
5607a62
a8a7982
3e34a93
 
 
 
a765116
98ff03c
a765116
 
 
98ff03c
 
 
 
 
 
 
a765116
98ff03c
a765116
 
a8a7982
98ff03c
a8a7982
98ff03c
a8a7982
98ff03c
 
 
 
 
 
 
 
a8a7982
3e34a93
 
93b1697
98ff03c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93b1697
98ff03c
a8a7982
98ff03c
 
 
 
 
 
 
a8a7982
3e34a93
 
93b1697
98ff03c
 
 
 
 
 
 
 
 
 
93b1697
98ff03c
a8a7982
98ff03c
 
 
 
 
 
 
a8a7982
3e34a93
 
93b1697
98ff03c
 
 
 
 
 
 
93b1697
a8a7982
 
 
3e34a93
98ff03c
f2c044d
98ff03c
 
 
 
 
 
 
 
 
 
f2c044d
dfa5d3e
3e34a93
f2c044d
a8a7982
98ff03c
 
 
 
f2c044d
a8a7982
98ff03c
3e34a93
 
a8a7982
 
3e34a93
a8a7982
3e34a93
cc173f9
a8a7982
98ff03c
a8a7982
 
cc173f9
98ff03c
a8a7982
 
 
cc173f9
98ff03c
a8a7982
98ff03c
 
 
a8a7982
98ff03c
cc173f9
a8a7982
98ff03c
 
 
a8a7982
98ff03c
cc173f9
a8a7982
98ff03c
cc173f9
a8a7982
cc173f9
b950350
98ff03c
a8a7982
0105281
a8a7982
98ff03c
a8a7982
3e34a93
98ff03c
f2c044d
98ff03c
 
 
 
 
 
 
 
f2c044d
b950350
559ca26
98ff03c
a765116
3e34a93
98ff03c
a765116
98ff03c
3e34a93
93b1697
f2c044d
98ff03c
a8a7982
f2c044d
98ff03c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93b1697
a8a7982
 
 
89daa1e
98ff03c
f2c044d
98ff03c
 
 
 
 
 
 
 
f2c044d
17d10a7
a8a7982
98ff03c
a8a7982
 
3e34a93
93b1697
cc173f9
3e34a93
a8a7982
cc173f9
3e34a93
a8a7982
98ff03c
3e34a93
98ff03c
3e34a93
cc173f9
cf3593c
98ff03c
a8a7982
 
 
98ff03c
a8a7982
3e34a93
98ff03c
f2c044d
98ff03c
 
 
 
 
 
 
 
 
 
f2c044d
ecc69bf
98ff03c
 
cc173f9
559ca26
 
98ff03c
cc173f9
98ff03c
a8a7982
98ff03c
a8a7982
 
98ff03c
 
cc173f9
93b1697
 
 
 
 
 
a8a7982
3e34a93
98ff03c
3e34a93
cc173f9
d9bf0f0
98ff03c
a8a7982
 
 
d3df06a
a8a7982
d3df06a
93b1697
d3df06a
 
 
 
 
 
 
 
 
 
 
 
 
 
cc173f9
d3df06a
 
 
 
 
 
 
 
cc173f9
 
 
 
d3df06a
 
 
 
 
 
 
 
 
 
 
 
 
eaef5b0
 
d3df06a
a8a7982
d3df06a
eaef5b0
93b1697
 
98ff03c
93b1697
 
d3df06a
a8a7982
 
93b1697
d3df06a
a8a7982
93b1697
 
 
 
 
d3df06a
93b1697
 
 
 
 
 
 
 
 
 
 
 
cc173f9
93b1697
a8a7982
 
 
93b1697
98ff03c
93b1697
 
 
 
 
d3df06a
98ff03c
 
 
 
 
 
 
93b1697
98ff03c
93b1697
98ff03c
 
 
93b1697
 
 
 
cc173f9
a8a7982
 
98ff03c
 
 
 
 
 
 
 
 
93b1697
98ff03c
 
93b1697
 
 
 
d3df06a
93b1697
 
 
 
 
 
 
 
 
cc173f9
a8a7982
 
93b1697
98ff03c
93b1697
 
 
 
 
d3df06a
93b1697
a8a7982
93b1697
 
 
 
 
 
 
cc173f9
a8a7982
3fe530b
93b1697
 
 
 
 
eaef5b0
93b1697
a8a7982
d3df06a
 
 
 
eaef5b0
d3df06a
a8a7982
 
93b1697
a8a7982
d3df06a
 
 
 
 
a8a7982
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
import os
import re
import logging
import torch
import tempfile
from typing import Tuple, Union
from scipy.io.wavfile import write
from pydub import AudioSegment
from dotenv import load_dotenv
import spaces
import gradio as gr

# Transformers & Models
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    pipeline,
    AutoProcessor,
    MusicgenForConditionalGeneration,
)
# Coqui TTS
from TTS.api import TTS

# Kokoro TTS (ensure these are installed)
# pip install -q kokoro>=0.8.2 soundfile
# apt-get -qq -y install espeak-ng > /dev/null 2>&1
from kokoro import KPipeline
import soundfile as sf

# ---------------------------------------------------------------------
# Configuration & Logging Setup
# ---------------------------------------------------------------------
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
    logging.warning("HF_TOKEN environment variable not set!")

logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")

# Global Model Caches
LLAMA_PIPELINES = {}
MUSICGEN_MODELS = {}
TTS_MODELS = {}

# ---------------------------------------------------------------------
# Utility Functions
# ---------------------------------------------------------------------
def clean_text(text: str) -> str:
    """
    Clean text by removing undesired characters.
    
    Args:
        text (str): Input text to be cleaned.
        
    Returns:
        str: Cleaned text.
    """
    # Remove all asterisks. Additional cleaning rules can be added.
    return re.sub(r'\*', '', text)

# ---------------------------------------------------------------------
# Model Loading Helper Functions
# ---------------------------------------------------------------------
def get_llama_pipeline(model_id: str, token: str) -> pipeline:
    """
    Load and cache the LLaMA text-generation pipeline.
    
    Args:
        model_id (str): Hugging Face model identifier.
        token (str): Hugging Face authentication token.
    
    Returns:
        pipeline: Text-generation pipeline instance.
    """
    if model_id in LLAMA_PIPELINES:
        return LLAMA_PIPELINES[model_id]

    try:
        tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
        model = AutoModelForCausalLM.from_pretrained(
            model_id,
            use_auth_token=token,
            torch_dtype=torch.float16,
            device_map="auto",
            trust_remote_code=True,
        )
        text_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
        LLAMA_PIPELINES[model_id] = text_pipeline
        return text_pipeline
    except Exception as e:
        logging.error(f"Error loading LLaMA pipeline: {e}")
        raise

def get_musicgen_model(model_key: str = "facebook/musicgen-large") -> Tuple[MusicgenForConditionalGeneration, AutoProcessor]:
    """
    Load and cache the MusicGen model and its processor.
    
    Args:
        model_key (str): Model key (default uses 'facebook/musicgen-large').
    
    Returns:
        tuple: (MusicGen model, processor)
    """
    if model_key in MUSICGEN_MODELS:
        return MUSICGEN_MODELS[model_key]

    try:
        model = MusicgenForConditionalGeneration.from_pretrained(model_key)
        processor = AutoProcessor.from_pretrained(model_key)
        device = "cuda" if torch.cuda.is_available() else "cpu"
        model.to(device)
        MUSICGEN_MODELS[model_key] = (model, processor)
        return model, processor
    except Exception as e:
        logging.error(f"Error loading MusicGen model: {e}")
        raise

def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC") -> TTS:
    """
    Load and cache the TTS model.
    
    Args:
        model_name (str): Name of the TTS model.
    
    Returns:
        TTS: TTS model instance.
    """
    if model_name in TTS_MODELS:
        return TTS_MODELS[model_name]

    try:
        tts_model = TTS(model_name)
        TTS_MODELS[model_name] = tts_model
        return tts_model
    except Exception as e:
        logging.error(f"Error loading TTS model: {e}")
        raise

# ---------------------------------------------------------------------
# Script Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_script(user_prompt: str, model_id: str, token: str, duration: int) -> Tuple[str, str, str]:
    """
    Generate a script, sound design suggestions, and music ideas from a user prompt.
    
    Args:
        user_prompt (str): The user's creative input.
        model_id (str): Hugging Face model identifier for LLaMA.
        token (str): Hugging Face authentication token.
        duration (int): Desired duration of the promo in seconds.
    
    Returns:
        tuple: (voice_script, sound_design, music_suggestions)
    """
    try:
        text_pipeline = get_llama_pipeline(model_id, token)
        system_prompt = (
            "You are an expert radio imaging producer specializing in sound design and music. "
            f"Based on the user's concept and the selected duration of {duration} seconds, produce the following:\n"
            "1. A concise voice-over script. Prefix this section with 'Voice-Over Script:'\n"
            "2. Suggestions for sound design. Prefix this section with 'Sound Design Suggestions:'\n"
            "3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'"
        )
        combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:"
        
        with torch.inference_mode():
            result = text_pipeline(
                combined_prompt,
                max_new_tokens=300,
                do_sample=True,
                temperature=0.8
            )

        generated_text = result[0]["generated_text"]
        # Remove everything before the 'Output:' marker if present
        if "Output:" in generated_text:
            generated_text = generated_text.split("Output:")[-1].strip()

        # Initialize default outputs
        voice_script = "No voice-over script found."
        sound_design = "No sound design suggestions found."
        music_suggestions = "No music suggestions found."

        # Parse generated text based on expected prefixes
        if "Voice-Over Script:" in generated_text:
            voice_section = generated_text.split("Voice-Over Script:")[1]
            if "Sound Design Suggestions:" in voice_section:
                voice_script = voice_section.split("Sound Design Suggestions:")[0].strip()
            else:
                voice_script = voice_section.strip()

        if "Sound Design Suggestions:" in generated_text:
            sound_section = generated_text.split("Sound Design Suggestions:")[1]
            if "Music Suggestions:" in sound_section:
                sound_design = sound_section.split("Music Suggestions:")[0].strip()
            else:
                sound_design = sound_section.strip()

        if "Music Suggestions:" in generated_text:
            music_suggestions = generated_text.split("Music Suggestions:")[-1].strip()

        return voice_script, sound_design, music_suggestions

    except Exception as e:
        logging.error(f"Error in generate_script: {e}")
        return f"Error generating script: {e}", "", ""

# ---------------------------------------------------------------------
# Voice-Over Generation Functions
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/tacotron2-DDC") -> Union[str, None]:
    """
    Generate a voice-over audio file using Coqui TTS from the provided script.
    
    Args:
        script (str): The voice-over script.
        tts_model_name (str): TTS model identifier.
    
    Returns:
        str: File path to the generated .wav file or an error message.
    """
    try:
        if not script.strip():
            raise ValueError("No script provided.")
        cleaned_script = clean_text(script)
        tts_model = get_tts_model(tts_model_name)
        output_path = os.path.join(tempfile.gettempdir(), "voice_over_coqui.wav")
        tts_model.tts_to_file(text=cleaned_script, file_path=output_path)
        logging.info(f"Coqui voice-over generated at {output_path}")
        return output_path

    except Exception as e:
        logging.error(f"Error in generate_voice (Coqui TTS): {e}")
        return f"Error generating voice: {e}"

@spaces.GPU(duration=100)
def generate_voice_kokoro(script: str, lang_code: str = 'a', voice: str = 'af_heart', speed: float = 1.0) -> Union[str, None]:
    """
    Generate a voice-over audio file using the Kokoro TTS model.
    
    Args:
        script (str): The text to synthesize.
        lang_code (str): Language code ('a' for American English, etc.).
        voice (str): Specific voice style.
        speed (float): Speech speed.
    
    Returns:
        str: File path to the generated WAV file or an error message.
    """
    try:
        # Initialize the Kokoro pipeline
        kp = KPipeline(lang_code=lang_code)
        audio_segments = []
        generator = kp(script, voice=voice, speed=speed, split_pattern=r'\n+')
        for i, (gs, ps, audio) in enumerate(generator):
            audio_segments.append(audio)

        # Join audio segments using pydub
        combined = AudioSegment.empty()
        for seg in audio_segments:
            segment = AudioSegment(
                seg.tobytes(),
                frame_rate=24000,
                sample_width=seg.dtype.itemsize,
                channels=1
            )
            combined += segment

        output_path = os.path.join(tempfile.gettempdir(), "voice_over_kokoro.wav")
        combined.export(output_path, format="wav")
        logging.info(f"Kokoro voice-over generated at {output_path}")
        return output_path

    except Exception as e:
        logging.error(f"Error in generate_voice_kokoro: {e}")
        return f"Error generating Kokoro voice: {e}"

# ---------------------------------------------------------------------
# Music Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=200)
def generate_music(prompt: str, audio_length: int) -> Union[str, None]:
    """
    Generate music based on the prompt using MusicGen.
    
    Args:
        prompt (str): Music prompt or style suggestion.
        audio_length (int): Length parameter (number of tokens).
    
    Returns:
        str: File path to the generated .wav file or an error message.
    """
    try:
        if not prompt.strip():
            raise ValueError("No music suggestion provided.")
        model_key = "facebook/musicgen-large"
        musicgen_model, musicgen_processor = get_musicgen_model(model_key)
        device = "cuda" if torch.cuda.is_available() else "cpu"
        inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device)

        with torch.inference_mode():
            outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)

        audio_data = outputs[0, 0].cpu().numpy()
        normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
        output_path = os.path.join(tempfile.gettempdir(), "musicgen_generated_music.wav")
        write(output_path, 44100, normalized_audio)
        logging.info(f"Music generated at {output_path}")
        return output_path

    except Exception as e:
        logging.error(f"Error in generate_music: {e}")
        return f"Error generating music: {e}"

# ---------------------------------------------------------------------
# Audio Blending Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10) -> Union[str, None]:
    """
    Blend voice and music audio files with optional ducking.
    
    Args:
        voice_path (str): File path to the voice audio.
        music_path (str): File path to the music audio.
        ducking (bool): If True, attenuate music during voice segments.
        duck_level (int): Attenuation level in dB.
    
    Returns:
        str: File path to the blended .wav file or an error message.
    """
    try:
        if not (os.path.isfile(voice_path) and os.path.isfile(music_path)):
            raise FileNotFoundError("Missing audio files for blending.")

        voice = AudioSegment.from_wav(voice_path)
        music = AudioSegment.from_wav(music_path)
        voice_duration = len(voice)

        if len(music) < voice_duration:
            looped_music = AudioSegment.empty()
            while len(looped_music) < voice_duration:
                looped_music += music
            music = looped_music
        else:
            music = music[:voice_duration]

        if ducking:
            ducked_music = music - duck_level
            final_audio = ducked_music.overlay(voice)
        else:
            final_audio = music.overlay(voice)

        output_path = os.path.join(tempfile.gettempdir(), "blended_output.wav")
        final_audio.export(output_path, format="wav")
        logging.info(f"Audio blended at {output_path}")
        return output_path

    except Exception as e:
        logging.error(f"Error in blend_audio: {e}")
        return f"Error blending audio: {e}"

# ---------------------------------------------------------------------
# Gradio Interface with Enhanced UI
# ---------------------------------------------------------------------
with gr.Blocks(css="""
    /* Global Styles */
    body {
        background: linear-gradient(135deg, #1d1f21, #3a3d41);
        color: #f0f0f0;
        font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
    }
    .header {
        text-align: center;
        padding: 2rem 1rem;
        background: linear-gradient(90deg, #6a11cb, #2575fc);
        border-radius: 0 0 20px 20px;
        margin-bottom: 2rem;
    }
    .header h1 {
        margin: 0;
        font-size: 2.5rem;
    }
    .header p {
        font-size: 1.2rem;
    }
    .gradio-container {
        background: #2e2e2e;
        border-radius: 10px;
        padding: 1rem;
    }
    .tab-title {
        font-size: 1.1rem;
        font-weight: bold;
    }
    .footer {
        text-align: center;
        font-size: 0.9em;
        margin-top: 2rem;
        padding: 1rem;
        color: #cccccc;
    }
""") as demo:

    # Custom Header
    with gr.Row(elem_classes="header"):
        gr.Markdown("""
        <h1>🎧 AI Promo Studio</h1>
        <p>Your all-in-one AI solution for crafting engaging audio promos.</p>
        """)

    gr.Markdown("""
    Welcome to **AI Promo Studio**! This platform leverages state-of-the-art AI models to help you generate:
    
    - **Script**: Generate a compelling voice-over script with LLaMA.
    - **Voice Synthesis**: Create natural-sounding voice-overs using Coqui TTS or Kokoro TTS.
    - **Music Production**: Produce custom music tracks with MusicGen.
    - **Audio Blending**: Seamlessly blend voice and music with options for ducking.
    """)

    with gr.Tabs():
        # Step 1: Generate Script
        with gr.Tab("πŸ“ Script Generation"):
            with gr.Row():
                user_prompt = gr.Textbox(
                    label="Promo Idea", 
                    placeholder="E.g., A 30-second promo for a morning show...",
                    lines=2
                )
            with gr.Row():
                llama_model_id = gr.Textbox(
                    label="LLaMA Model ID", 
                    value="meta-llama/Meta-Llama-3-8B-Instruct", 
                    placeholder="Enter a valid Hugging Face model ID"
                )
                duration = gr.Slider(
                    label="Desired Promo Duration (seconds)",
                    minimum=15, 
                    maximum=60, 
                    step=15, 
                    value=30
                )
            generate_script_button = gr.Button("Generate Script", variant="primary")
            script_output = gr.Textbox(label="Generated Voice-Over Script", lines=5, interactive=False)
            sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
            music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)

            generate_script_button.click(
                fn=lambda prompt, model, dur: generate_script(prompt, model, HF_TOKEN, dur),
                inputs=[user_prompt, llama_model_id, duration],
                outputs=[script_output, sound_design_output, music_suggestion_output],
            )

        # Step 2: Generate Voice
        with gr.Tab("🎀 Voice Synthesis"):
            gr.Markdown("Generate a natural-sounding voice-over. Choose your TTS engine below:")
            voice_engine = gr.Dropdown(
                label="TTS Engine",
                choices=["Coqui TTS", "Kokoro TTS"],
                value="Coqui TTS",
                multiselect=False
            )
            selected_tts_model = gr.Dropdown(
                label="TTS Model / Voice Option",
                choices=[
                    "tts_models/en/ljspeech/tacotron2-DDC",  # Coqui TTS option
                    "tts_models/en/ljspeech/vits",            # Coqui TTS option
                    "af_heart"                                # Kokoro TTS voice option
                ],
                value="tts_models/en/ljspeech/tacotron2-DDC",
                multiselect=False
            )
            generate_voice_button = gr.Button("Generate Voice-Over", variant="primary")
            voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")

            def generate_voice_combined(script, engine, model_choice):
                if engine == "Coqui TTS":
                    return generate_voice(script, model_choice)
                elif engine == "Kokoro TTS":
                    # For Kokoro, pass the voice option (e.g., "af_heart") and default language code ('a')
                    return generate_voice_kokoro(script, lang_code='a', voice=model_choice, speed=1.0)
                else:
                    return "Error: Unknown TTS engine."

            generate_voice_button.click(
                fn=generate_voice_combined,
                inputs=[script_output, voice_engine, selected_tts_model],
                outputs=voice_audio_output,
            )

        # Step 3: Generate Music
        with gr.Tab("🎢 Music Production"):
            gr.Markdown("Generate a custom music track using the **MusicGen Large** model.")
            audio_length = gr.Slider(
                label="Music Length (tokens)",
                minimum=128, 
                maximum=1024, 
                step=64, 
                value=512,
                info="Increase tokens for longer audio (inference time may vary)."
            )
            generate_music_button = gr.Button("Generate Music", variant="primary")
            music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")

            generate_music_button.click(
                fn=lambda prompt, length: generate_music(prompt, length),
                inputs=[music_suggestion_output, audio_length],
                outputs=[music_output],
            )

        # Step 4: Blend Audio
        with gr.Tab("🎚️ Audio Blending"):
            gr.Markdown("Blend your voice-over and music track. Music will be looped/truncated to match the voice duration. Enable ducking to lower the music during voice segments.")
            ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
            duck_level_slider = gr.Slider(
                label="Ducking Level (dB attenuation)", 
                minimum=0, 
                maximum=20, 
                step=1, 
                value=10
            )
            blend_button = gr.Button("Blend Voice + Music", variant="primary")
            blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath")

            blend_button.click(
                fn=blend_audio,
                inputs=[voice_audio_output, music_output, ducking_checkbox, duck_level_slider],
                outputs=blended_output
            )

    # Footer
    gr.Markdown("""
    <div class="footer">
        <hr>
        Created with ❀️ by <a href="https://bilsimaging.com" target="_blank" style="color: #88aaff;">bilsimaging.com</a>
        <br>
        <small>AI Promo Studio &copy; 2025</small>
    </div>
    """)
    
    # Visitor Badge
    gr.HTML("""
    <div style="text-align: center; margin-top: 1rem;">
        <a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
            <img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759" alt="visitor badge"/>
        </a>
    </div>
    """)

demo.launch(debug=True)