Spaces:
Runtime error
Runtime error
import spaces | |
import os | |
import tempfile | |
import gradio as gr | |
from dotenv import load_dotenv | |
import torch | |
from scipy.io.wavfile import write | |
from diffusers import DiffusionPipeline | |
from transformers import pipeline | |
from pathlib import Path | |
from PIL import Image # <-- Required for new model | |
import io # <-- Required for new model | |
# --- Setup Models and Device --- | |
load_dotenv() | |
hf_token = os.getenv("HF_TKN") | |
# Use GPU if available, otherwise CPU | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {device}") | |
# Correctly initialize the modern, reliable captioning pipeline | |
captioning_pipeline = pipeline( | |
"image-to-text", | |
model="Salesforce/blip-image-captioning-large", | |
device=device | |
) | |
print("Image captioning pipeline loaded.") | |
# Initialize the audio pipeline. Use float16 for less VRAM on GPU. | |
pipe = DiffusionPipeline.from_pretrained( | |
"cvssp/audioldm2", | |
torch_dtype=torch.float16 if device == "cuda" else torch.float32, | |
) | |
print("Audio generation pipeline loaded.") | |
# --- Core Functions --- | |
def analyze_image_with_free_model(image_file_bytes): | |
"""Takes image bytes and returns a caption.""" | |
try: | |
print("Received image bytes, opening with Pillow...") | |
# Open the image data directly from memory using Pillow | |
image = Image.open(io.BytesIO(image_file_bytes)).convert("RGB") | |
print("Generating caption...") | |
results = captioning_pipeline(image) | |
if not results or not isinstance(results, list): | |
print("ERROR: Caption generation returned invalid results.") | |
return "Error: Could not generate caption.", True | |
caption = results[0].get("generated_text", "").strip() | |
if not caption: | |
print("ERROR: Generated caption is empty.") | |
return "No caption was generated.", True | |
print(f"Successfully generated caption: {caption}") | |
return caption, False | |
except Exception as e: | |
print(f"!!!!!! EXCEPTION in analyze_image_with_free_model: {e}") | |
return f"Error analyzing image: {e}", True | |
def get_audioldm_from_caption(caption): | |
"""Takes a text caption and returns a filepath to a generated WAV file.""" | |
try: | |
# Move the large audio pipeline to the GPU only when it's being used | |
pipe.to(device) | |
print(f"Generating audio for prompt: '{caption}'") | |
audio_output = pipe( | |
prompt=caption, | |
num_inference_steps=25, # Fewer steps for faster generation | |
guidance_scale=7.0 | |
).audios[0] | |
# Move the pipeline back to CPU to free up GPU memory for others | |
pipe.to("cpu") | |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav: | |
print(f"Saving audio to temporary file: {temp_wav.name}") | |
# write(file, sample_rate, data) | |
write(temp_wav.name, 16000, audio_output) | |
return temp_wav.name | |
except Exception as e: | |
print(f"!!!!!! EXCEPTION in get_audioldm_from_caption: {e}") | |
return None | |
# --- Gradio Interface --- | |
css = """ | |
#col-container{ margin: 0 auto; max-width: 800px; } | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(""" | |
<h1 style="text-align: center;">🎶 Generate Sound Effects from Image</h1> | |
<p style="text-align: center;"> | |
⚡ Powered by <a href="https://bilsimaging.com" target="_blank">Bilsimaging</a> | |
</p> | |
""") | |
gr.Markdown(""" | |
1. **Upload an image**. | |
2. Click **Generate Description**. | |
3. Click **Generate Sound Effect**. | |
""") | |
image_upload = gr.File(label="Upload Image", type="binary") | |
generate_description_button = gr.Button("Generate Description", variant="primary") | |
caption_display = gr.Textbox(label="Image Description", interactive=False) | |
generate_sound_button = gr.Button("Generate Sound Effect") | |
audio_output = gr.Audio(label="Generated Sound Effect") | |
gr.Markdown(""" | |
## 👥 Contribute & Support | |
For support, questions, or to contribute, please contact us at | |
[[email protected]](mailto:[email protected]). | |
Support our work and get involved by donating through | |
[Ko-fi](https://ko-fi.com/bilsimaging). - Bilel Aroua | |
""") | |
# --- Event Handlers --- | |
def update_caption(image_bytes): | |
"""Wrapper function for the button click.""" | |
if image_bytes is None: | |
return "Please upload an image first." | |
description, _ = analyze_image_with_free_model(image_bytes) | |
return description | |
def generate_sound(description): | |
"""Wrapper function for the button click.""" | |
if not description or description.startswith("Error"): | |
gr.Warning("Cannot generate sound without a valid description!") | |
return None | |
audio_path = get_audioldm_from_caption(description) | |
if audio_path is None: | |
gr.Error("Failed to generate audio. Please check the logs.") | |
return audio_path | |
generate_description_button.click( | |
fn=update_caption, | |
inputs=image_upload, | |
outputs=caption_display | |
) | |
generate_sound_button.click( | |
fn=generate_sound, | |
inputs=caption_display, | |
outputs=audio_output | |
) | |
gr.HTML('<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image"><img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image&countColor=%23263759" /></a>') | |
# Launch the app. `share=True` is not needed on Spaces. | |
demo.launch() |