Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,463 +1,474 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
import
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
os.environ.setdefault("PYTHONUNBUFFERED", "1")
|
13 |
-
|
14 |
-
def _crash_trap(exctype, value, tb):
|
15 |
-
ts = datetime.datetime.utcnow().isoformat()
|
16 |
-
print(f"\n===== FATAL ({ts}Z) =====================================")
|
17 |
-
traceback.print_exception(exctype, value, tb)
|
18 |
-
print("=========================================================\n", flush=True)
|
19 |
-
sys.excepthook = _crash_trap
|
20 |
-
|
21 |
-
# ========= Minimal imports for startup =========
|
22 |
import gradio as gr
|
23 |
-
|
|
|
|
|
24 |
from loguru import logger
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
# ---- ZeroGPU marker FIRST (so startup detector finds it) ----
|
27 |
-
@GPU(duration=5)
|
28 |
-
def _zgpu_marker(_: int = 0) -> int:
|
29 |
-
"""No-op; only to advertise a GPU-decorated function at import-time."""
|
30 |
-
return _
|
31 |
-
|
32 |
-
# ========= Paths & Configs =========
|
33 |
-
ROOT = Path(__file__).parent.resolve()
|
34 |
-
REPO_DIR = ROOT / "HunyuanVideo-Foley"
|
35 |
-
WEIGHTS_DIR = ROOT / "weights"
|
36 |
-
CACHE_DIR = ROOT / "cache"
|
37 |
-
OUT_DIR = ROOT / "outputs"
|
38 |
-
ASSETS = ROOT / "assets"
|
39 |
-
for p in (ASSETS, WEIGHTS_DIR, CACHE_DIR, OUT_DIR):
|
40 |
-
p.mkdir(parents=True, exist_ok=True)
|
41 |
-
|
42 |
-
APP_TITLE = os.environ.get("APP_TITLE", "Foley Studio Β· ZeroGPU")
|
43 |
-
APP_TAGLINE = os.environ.get("APP_TAGLINE", "Generate scene-true foley for short clips (ZeroGPU-ready).")
|
44 |
-
PRIMARY_COLOR = os.environ.get("PRIMARY_COLOR", "#6B5BFF")
|
45 |
-
|
46 |
-
# ZeroGPU-friendly defaults
|
47 |
-
MAX_SECS = int(os.environ.get("MAX_SECS", "15"))
|
48 |
-
TARGET_H = int(os.environ.get("TARGET_H", "480"))
|
49 |
-
SR = int(os.environ.get("TARGET_SR", "48000"))
|
50 |
-
ZEROGPU_DURATION = int(os.environ.get("ZEROGPU_DURATION", "110"))
|
51 |
-
|
52 |
-
# ========= Light utils (safe at import) =========
|
53 |
-
def sh(cmd: str):
|
54 |
-
print(">>", cmd)
|
55 |
-
subprocess.run(cmd, shell=True, check=True)
|
56 |
-
|
57 |
-
def ffprobe_duration(path: str) -> float:
|
58 |
-
try:
|
59 |
-
out = subprocess.check_output([
|
60 |
-
"ffprobe", "-v", "error", "-show_entries", "format=duration",
|
61 |
-
"-of", "default=noprint_wrappers=1:nokey=1", path
|
62 |
-
]).decode().strip()
|
63 |
-
return float(out)
|
64 |
-
except Exception:
|
65 |
-
return 0.0
|
66 |
|
67 |
-
def
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
return
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
sh(f"git -C {REPO_DIR} init")
|
85 |
-
sh(
|
86 |
-
f"git -C {REPO_DIR} -c filter.lfs.smudge= -c filter.lfs.required=false "
|
87 |
-
"remote add origin https://github.com/Tencent-Hunyuan/HunyuanVideo-Foley.git"
|
88 |
)
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
"requirements.txt",
|
97 |
-
"LICENSE",
|
98 |
-
"README.md",
|
99 |
-
]) + "\n")
|
100 |
-
try:
|
101 |
-
sh(f"git -C {REPO_DIR} fetch --depth 1 origin main")
|
102 |
-
sh(f"git -C {REPO_DIR} checkout main")
|
103 |
-
except subprocess.CalledProcessError:
|
104 |
-
sh(f"git -C {REPO_DIR} fetch --depth 1 origin master")
|
105 |
-
sh(f"git -C {REPO_DIR} checkout master")
|
106 |
-
|
107 |
-
def prepare_code_and_weights():
|
108 |
-
from huggingface_hub import snapshot_download
|
109 |
-
_clone_without_lfs()
|
110 |
-
if str(REPO_DIR) not in sys.path:
|
111 |
-
sys.path.insert(0, str(REPO_DIR))
|
112 |
snapshot_download(
|
113 |
repo_id="tencent/HunyuanVideo-Foley",
|
114 |
-
local_dir=
|
115 |
-
local_dir_use_symlinks=False,
|
116 |
-
repo_type="model",
|
117 |
resume_download=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
)
|
119 |
-
os.environ["HIFI_FOLEY_MODEL_PATH"] = str(WEIGHTS_DIR)
|
120 |
|
121 |
-
# Do lightweight prep (no model init) at import-time
|
122 |
-
prepare_code_and_weights()
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
|
128 |
-
# ========= Heavy deps & model utilities (deferred import) =========
|
129 |
-
_model_dict = None
|
130 |
-
_cfg = None
|
131 |
-
_device = None
|
132 |
-
|
133 |
-
def _lazy_heavy_imports():
|
134 |
-
global torch, torchaudio
|
135 |
-
import torch, torchaudio # noqa
|
136 |
-
try:
|
137 |
-
import audiotools # provided by 'descript-audiotools'
|
138 |
-
except Exception as e:
|
139 |
-
raise RuntimeError(
|
140 |
-
"Missing 'audiotools'. Add 'descript-audiotools>=0.7.2' to requirements.txt."
|
141 |
-
) from e
|
142 |
-
try:
|
143 |
-
import omegaconf # noqa
|
144 |
-
import yaml # noqa
|
145 |
-
import easydict # noqa
|
146 |
-
except Exception as e:
|
147 |
-
raise RuntimeError(
|
148 |
-
"Missing config deps. Add: omegaconf>=2.3.0, pyyaml, easydict."
|
149 |
-
) from e
|
150 |
-
|
151 |
-
# Tencent internals
|
152 |
-
from hunyuanvideo_foley.utils.model_utils import load_model, denoise_process # noqa
|
153 |
-
from hunyuanvideo_foley.utils.feature_utils import feature_process # noqa
|
154 |
-
from hunyuanvideo_foley.utils.media_utils import merge_audio_video # noqa
|
155 |
-
return torch, torchaudio
|
156 |
-
|
157 |
-
def _ensure_clap_safetensors_only():
|
158 |
-
from huggingface_hub import snapshot_download
|
159 |
-
# Pre-cache only safetensors; block .bin selection
|
160 |
-
snapshot_download(
|
161 |
-
repo_id="laion/larger_clap_general",
|
162 |
-
allow_patterns=[
|
163 |
-
"*.safetensors", "config.json", "*.json", "*.txt",
|
164 |
-
"tokenizer*", "*merges*", "*vocab*"
|
165 |
-
],
|
166 |
-
ignore_patterns=["*.bin"],
|
167 |
-
resume_download=True,
|
168 |
-
local_dir=None,
|
169 |
-
local_dir_use_symlinks=False,
|
170 |
-
)
|
171 |
-
# Purge any cached .bin for the model
|
172 |
-
cache_root = Path.home() / ".cache" / "huggingface" / "hub"
|
173 |
-
for pat in [cache_root / "models--laion--larger_clap_general" / "snapshots" / "*" / "*.bin"]:
|
174 |
-
for f in glob.glob(str(pat)):
|
175 |
-
try:
|
176 |
-
Path(f).unlink()
|
177 |
-
print(f">> Purged cached bin: {f}")
|
178 |
-
except Exception:
|
179 |
-
pass
|
180 |
-
|
181 |
-
def _setup_device(device_str: str = "auto", gpu_id: int = 0):
|
182 |
-
import torch
|
183 |
-
if device_str == "auto":
|
184 |
-
if torch.cuda.is_available():
|
185 |
-
d = torch.device(f"cuda:{gpu_id}")
|
186 |
-
logger.info(f"Using CUDA {d}")
|
187 |
-
elif torch.backends.mps.is_available():
|
188 |
-
d = torch.device("mps")
|
189 |
-
logger.info("Using MPS")
|
190 |
-
else:
|
191 |
-
d = torch.device("cpu")
|
192 |
-
logger.info("Using CPU")
|
193 |
-
else:
|
194 |
-
d = torch.device(device_str if device_str != "cuda" else f"cuda:{gpu_id}")
|
195 |
-
logger.info(f"Using specified device: {d}")
|
196 |
-
return d
|
197 |
|
|
|
|
|
|
|
198 |
def auto_load_models() -> str:
|
199 |
-
"""
|
|
|
|
|
|
|
200 |
global _model_dict, _cfg, _device
|
201 |
-
if _model_dict is not None:
|
202 |
-
return "β
Model already loaded"
|
203 |
|
204 |
-
|
205 |
-
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
return f"β Config file not found: {CONFIG_PATH}"
|
211 |
|
212 |
_device = _setup_device("auto", 0)
|
213 |
logger.info("Loading HunyuanVideo-Foley model...")
|
214 |
-
logger.info(f"MODEL_PATH: {
|
215 |
logger.info(f"CONFIG_PATH: {CONFIG_PATH}")
|
216 |
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
trimmed = temp_dir / "trim.mp4"
|
235 |
-
processed = temp_dir / "proc.mp4"
|
236 |
-
trim_args = ["-t", str(MAX_SECS)] if dur > MAX_SECS else []
|
237 |
-
|
238 |
-
sh(" ".join([
|
239 |
-
"ffmpeg", "-y", "-i", f"\"{in_path}\"", *trim_args,
|
240 |
-
"-an", "-vcodec", "libx264", "-preset", "veryfast", "-crf", "23",
|
241 |
-
"-movflags", "+faststart", f"\"{trimmed}\""
|
242 |
-
]))
|
243 |
-
vf = f"scale=-2:{TARGET_H}:flags=bicubic"
|
244 |
-
sh(" ".join([
|
245 |
-
"ffmpeg", "-y", "-i", f"\"{trimmed}\"",
|
246 |
-
"-vf", f"\"{vf}\"", "-an",
|
247 |
-
"-vcodec", "libx264", "-profile:v", "baseline", "-level", "3.1",
|
248 |
-
"-pix_fmt", "yuv420p", "-preset", "veryfast", "-crf", "24",
|
249 |
-
"-movflags", "+faststart", f"\"{processed}\""
|
250 |
-
]))
|
251 |
-
return str(processed), min(dur, float(MAX_SECS))
|
252 |
-
|
253 |
-
def mux_audio_with_video(video_path: str, audio_path: str) -> str:
|
254 |
-
out_path = Path(tempfile.mkdtemp(prefix="mux_")) / "with_foley.mp4"
|
255 |
-
sh(" ".join([
|
256 |
-
"ffmpeg", "-y", "-i", f"\"{video_path}\"", "-i", f"\"{audio_path}\"",
|
257 |
-
"-map", "0:v:0", "-map", "1:a:0", "-c:v", "copy", "-c:a", "aac", "-b:a", "192k",
|
258 |
-
"-shortest", f"\"{out_path}\""
|
259 |
-
]))
|
260 |
-
return str(out_path)
|
261 |
-
|
262 |
-
# ========= Inference (GPU-decorated) =========
|
263 |
-
@GPU(duration=ZEROGPU_DURATION)
|
264 |
-
def run_model(video_path: str, prompt_text: str,
|
265 |
-
guidance_scale: float = 4.5,
|
266 |
-
num_inference_steps: int = 50,
|
267 |
-
sample_nums: int = 1):
|
268 |
"""
|
269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
"""
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
|
|
275 |
|
276 |
-
|
277 |
-
import torchaudio
|
278 |
from hunyuanvideo_foley.utils.feature_utils import feature_process
|
279 |
from hunyuanvideo_foley.utils.model_utils import denoise_process
|
280 |
|
281 |
-
|
282 |
-
|
283 |
visual_feats, text_feats, audio_len_s = feature_process(
|
284 |
-
|
285 |
)
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
)
|
292 |
|
293 |
-
|
294 |
-
|
295 |
-
wav_paths = []
|
296 |
for i in range(sample_nums):
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
#
|
303 |
-
|
304 |
-
|
|
|
|
|
305 |
try:
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
.
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
.
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
"""
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
with gr.Row():
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
)
|
422 |
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
""
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import sys
|
4 |
+
import json
|
5 |
+
import shutil
|
6 |
+
import random
|
7 |
+
import tempfile
|
8 |
+
import base64
|
9 |
+
from datetime import datetime
|
10 |
+
from typing import List, Optional, Tuple, Dict
|
11 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
import gradio as gr
|
13 |
+
import numpy as np
|
14 |
+
import torch
|
15 |
+
import torchaudio
|
16 |
from loguru import logger
|
17 |
+
from huggingface_hub import snapshot_download
|
18 |
+
|
19 |
+
# --- Tencent repo imports (pulled at startup) ---
|
20 |
+
# These are available after we git clone the repo in prepare_once()
|
21 |
+
# Do not move these imports above the clone step in __main__.
|
22 |
+
# from hunyuanvideo_foley.utils.model_utils import load_model, denoise_process
|
23 |
+
# from hunyuanvideo_foley.utils.feature_utils import feature_process
|
24 |
+
# from hunyuanvideo_foley.utils.media_utils import merge_audio_video
|
25 |
+
|
26 |
+
# HF Spaces GPU decorator
|
27 |
+
import spaces
|
28 |
+
|
29 |
+
# -------------------------
|
30 |
+
# Constants & configuration
|
31 |
+
# -------------------------
|
32 |
+
SPACE_TITLE = "π΅ ShortiFoley β HunyuanVideo-Foley"
|
33 |
+
SPACE_TAGLINE = "Text/Video β Audio Foley. Created by bilsimaging.com"
|
34 |
+
GALLERY_DIR = os.environ.get("OUTPUTS_DIR", "outputs")
|
35 |
+
WEIGHTS_DIR = os.environ.get("HIFI_FOLEY_MODEL_PATH", "/home/user/app/weights")
|
36 |
+
REPO_DIR = "/home/user/app/HunyuanVideo-Foley"
|
37 |
+
CONFIG_PATH = os.environ.get(
|
38 |
+
"HIFI_FOLEY_CONFIG",
|
39 |
+
f"{REPO_DIR}/configs/hunyuanvideo-foley-xxl.yaml"
|
40 |
+
)
|
41 |
+
# keep <=120s for ZeroGPU
|
42 |
+
GPU_DURATION = int(os.environ.get("GPU_DURATION_SECS", "110"))
|
43 |
+
|
44 |
+
os.makedirs(GALLERY_DIR, exist_ok=True)
|
45 |
+
os.makedirs(WEIGHTS_DIR, exist_ok=True)
|
46 |
+
|
47 |
+
# Globals populated after model load
|
48 |
+
_model_dict = None
|
49 |
+
_cfg = None
|
50 |
+
_device: Optional[torch.device] = None
|
51 |
+
|
52 |
+
# ------------
|
53 |
+
# Small helpers
|
54 |
+
# ------------
|
55 |
+
def _setup_device(pref: str = "auto", gpu_id: int = 0) -> torch.device:
|
56 |
+
"""Pick CUDA if available, else MPS, else CPU."""
|
57 |
+
if pref == "auto":
|
58 |
+
if torch.cuda.is_available():
|
59 |
+
d = torch.device(f"cuda:{gpu_id}")
|
60 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
61 |
+
d = torch.device("mps")
|
62 |
+
else:
|
63 |
+
d = torch.device("cpu")
|
64 |
+
else:
|
65 |
+
d = torch.device(pref)
|
66 |
+
logger.info(f"Using CUDA {d}" if d.type == "cuda" else f"Using {d}")
|
67 |
+
return d
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
def _save_video_result(video_file: str, audio_tensor: torch.Tensor, sr: int, idx: int) -> str:
|
71 |
+
"""Save audio to wav, merge with original video, and save mp4 into gallery."""
|
72 |
+
from hunyuanvideo_foley.utils.media_utils import merge_audio_video
|
73 |
+
|
74 |
+
temp_dir = tempfile.mkdtemp()
|
75 |
+
audio_path = os.path.join(temp_dir, f"gen_{idx}.wav")
|
76 |
+
|
77 |
+
# torchaudio expects shape [channels, samples]
|
78 |
+
if audio_tensor.ndim == 1:
|
79 |
+
audio_tensor = audio_tensor.unsqueeze(0)
|
80 |
+
torchaudio.save(audio_path, audio_tensor.cpu(), sr)
|
81 |
+
|
82 |
+
timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S_%f")
|
83 |
+
out_name = f"shortifoley_{timestamp}_{idx}.mp4"
|
84 |
+
out_path = os.path.join(GALLERY_DIR, out_name)
|
85 |
+
merge_audio_video(audio_path, video_file, out_path)
|
86 |
+
return out_path
|
87 |
+
|
88 |
+
|
89 |
+
def _list_gallery(limit: int = 100) -> List[str]:
|
90 |
+
files = []
|
91 |
+
for fn in sorted(os.listdir(GALLERY_DIR), reverse=True):
|
92 |
+
if fn.lower().endswith((".mp4", ".webm", ".mov", ".mkv")):
|
93 |
+
files.append(os.path.join(GALLERY_DIR, fn))
|
94 |
+
if len(files) >= limit:
|
95 |
+
break
|
96 |
+
return files
|
97 |
+
|
98 |
+
|
99 |
+
def _ensure_repo() -> None:
|
100 |
+
"""Shallow clone the Tencent repo with LFS smudge disabled to avoid quota issues."""
|
101 |
+
if os.path.exists(REPO_DIR) and os.path.isdir(REPO_DIR):
|
102 |
return
|
103 |
+
cmd = (
|
104 |
+
f"GIT_LFS_SKIP_SMUDGE=1 git -c filter.lfs.smudge= "
|
105 |
+
f"-c filter.lfs.required=false clone --depth 1 "
|
106 |
+
f"https://github.com/Tencent-Hunyuan/HunyuanVideo-Foley.git {REPO_DIR}"
|
|
|
|
|
|
|
|
|
107 |
)
|
108 |
+
logger.info(f">> {cmd}")
|
109 |
+
os.system(cmd)
|
110 |
+
|
111 |
+
|
112 |
+
def _download_weights_if_needed() -> None:
|
113 |
+
"""Pull big .pth files (and small assets) from HF model repo snapshot."""
|
114 |
+
# The official weights are hosted on the HF model page, so we snapshot into WEIGHTS_DIR
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
snapshot_download(
|
116 |
repo_id="tencent/HunyuanVideo-Foley",
|
117 |
+
local_dir=WEIGHTS_DIR,
|
|
|
|
|
118 |
resume_download=True,
|
119 |
+
allow_patterns=[
|
120 |
+
"hunyuanvideo_foley.pth",
|
121 |
+
"synchformer_state_dict.pth",
|
122 |
+
"vae_128d_48k.pth",
|
123 |
+
"assets/*",
|
124 |
+
"config.yaml", # not used directly here, but harmless
|
125 |
+
],
|
126 |
)
|
|
|
127 |
|
|
|
|
|
128 |
|
129 |
+
def prepare_once() -> None:
|
130 |
+
_ensure_repo()
|
131 |
+
_download_weights_if_needed()
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
# -----------------------
|
135 |
+
# Model load & inference
|
136 |
+
# -----------------------
|
137 |
def auto_load_models() -> str:
|
138 |
+
"""
|
139 |
+
Load HunyuanVideo-Foley + encoders on the chosen device.
|
140 |
+
Uses safetensors where possible; falls back to HF/torch internal loaders.
|
141 |
+
"""
|
142 |
global _model_dict, _cfg, _device
|
|
|
|
|
143 |
|
144 |
+
if _model_dict is not None and _cfg is not None:
|
145 |
+
return "Model already loaded."
|
146 |
|
147 |
+
# Late imports (repo becomes available after clone).
|
148 |
+
sys.path.append(REPO_DIR)
|
149 |
+
from hunyuanvideo_foley.utils.model_utils import load_model
|
|
|
150 |
|
151 |
_device = _setup_device("auto", 0)
|
152 |
logger.info("Loading HunyuanVideo-Foley model...")
|
153 |
+
logger.info(f"MODEL_PATH: {WEIGHTS_DIR}")
|
154 |
logger.info(f"CONFIG_PATH: {CONFIG_PATH}")
|
155 |
|
156 |
+
try:
|
157 |
+
_model_dict, _cfg = load_model(WEIGHTS_DIR, CONFIG_PATH, _device)
|
158 |
+
return "β
Model loaded."
|
159 |
+
except Exception as e:
|
160 |
+
logger.error(e)
|
161 |
+
return f"β Failed to load model: {e}"
|
162 |
+
|
163 |
+
|
164 |
+
@spaces.GPU(duration=GPU_DURATION)
|
165 |
+
@torch.inference_mode()
|
166 |
+
def infer_single_video(
|
167 |
+
video_file: str,
|
168 |
+
text_prompt: str,
|
169 |
+
guidance_scale: float = 4.5,
|
170 |
+
num_inference_steps: int = 50,
|
171 |
+
sample_nums: int = 1,
|
172 |
+
) -> Tuple[List[str], str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
"""
|
174 |
+
Generate Foley audio for an uploaded video (1β6 variants).
|
175 |
+
Args:
|
176 |
+
video_file: Path to a local video file on the Space.
|
177 |
+
text_prompt: Optional text prompt to steer the audio.
|
178 |
+
guidance_scale: CFG scale.
|
179 |
+
num_inference_steps: Denoising steps.
|
180 |
+
sample_nums: Number of audio variants to produce (1β6).
|
181 |
+
Returns:
|
182 |
+
(video_paths, status_message)
|
183 |
"""
|
184 |
+
if _model_dict is None or _cfg is None:
|
185 |
+
return [], "β Load the model first."
|
186 |
+
|
187 |
+
if not video_file:
|
188 |
+
return [], "β Please provide a video."
|
189 |
|
190 |
+
sys.path.append(REPO_DIR)
|
|
|
191 |
from hunyuanvideo_foley.utils.feature_utils import feature_process
|
192 |
from hunyuanvideo_foley.utils.model_utils import denoise_process
|
193 |
|
194 |
+
# preprocess
|
|
|
195 |
visual_feats, text_feats, audio_len_s = feature_process(
|
196 |
+
video_file, (text_prompt or "").strip(), _model_dict, _cfg
|
197 |
)
|
198 |
+
|
199 |
+
# generate batch
|
200 |
+
sample_nums = int(max(1, min(6, sample_nums)))
|
201 |
+
audio, sr = denoise_process(
|
202 |
+
visual_feats,
|
203 |
+
text_feats,
|
204 |
+
audio_len_s,
|
205 |
+
_model_dict,
|
206 |
+
_cfg,
|
207 |
+
guidance_scale=guidance_scale,
|
208 |
+
num_inference_steps=int(num_inference_steps),
|
209 |
+
batch_size=sample_nums,
|
210 |
)
|
211 |
|
212 |
+
# save results
|
213 |
+
out_videos = []
|
|
|
214 |
for i in range(sample_nums):
|
215 |
+
out_videos.append(_save_video_result(video_file, audio[i], sr, i + 1))
|
216 |
+
|
217 |
+
return out_videos, f"β
Generated {len(out_videos)} result(s). Saved to {GALLERY_DIR}/"
|
218 |
+
|
219 |
+
|
220 |
+
# ---------------
|
221 |
+
# MCP-only API(s)
|
222 |
+
# ---------------
|
223 |
+
def _download_to_tmp(url: str) -> str:
|
224 |
+
"""Download a remote file to a temp path. Lightweight helper for MCP."""
|
225 |
try:
|
226 |
+
import requests # optional dependency
|
227 |
+
except Exception:
|
228 |
+
raise RuntimeError("The server is missing 'requests'. Add it to requirements.txt to use URL inputs.")
|
229 |
+
|
230 |
+
r = requests.get(url, timeout=30)
|
231 |
+
r.raise_for_status()
|
232 |
+
suffix = ".mp4"
|
233 |
+
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=suffix)
|
234 |
+
tmp.write(r.content)
|
235 |
+
tmp.flush()
|
236 |
+
tmp.close()
|
237 |
+
return tmp.name
|
238 |
+
|
239 |
+
|
240 |
+
def _maybe_from_base64(data_url_or_b64: str) -> str:
|
241 |
+
"""Accept data: URLs or raw base64 for MCP convenience; returns temp file path."""
|
242 |
+
b64 = data_url_or_b64
|
243 |
+
if data_url_or_b64.startswith("data:"):
|
244 |
+
# data:video/mp4;base64,XXXX
|
245 |
+
b64 = data_url_or_b64.split(",", 1)[-1]
|
246 |
+
raw = base64.b64decode(b64)
|
247 |
+
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
248 |
+
tmp.write(raw)
|
249 |
+
tmp.flush()
|
250 |
+
tmp.close()
|
251 |
+
return tmp.name
|
252 |
+
|
253 |
+
|
254 |
+
def _normalize_video_input(video_url_or_b64: str) -> str:
|
255 |
+
"""Return a local filename from url or base64. Raises on error."""
|
256 |
+
v = (video_url_or_b64 or "").strip()
|
257 |
+
if v.startswith("http://") or v.startswith("https://"):
|
258 |
+
return _download_to_tmp(v)
|
259 |
+
# assume base64
|
260 |
+
return _maybe_from_base64(v)
|
261 |
+
|
262 |
+
|
263 |
+
def _api_generate_from_local(
|
264 |
+
local_video_path: str,
|
265 |
+
text_prompt: str = "",
|
266 |
+
guidance_scale: float = 4.5,
|
267 |
+
num_inference_steps: int = 50,
|
268 |
+
sample_nums: int = 1,
|
269 |
+
) -> Dict[str, List[str]]:
|
270 |
+
outs, msg = infer_single_video(
|
271 |
+
video_file=local_video_path,
|
272 |
+
text_prompt=text_prompt or "",
|
273 |
+
guidance_scale=float(guidance_scale),
|
274 |
+
num_inference_steps=int(num_inference_steps),
|
275 |
+
sample_nums=int(sample_nums),
|
276 |
+
)
|
277 |
+
return {"videos": outs, "message": msg}
|
278 |
+
|
279 |
+
|
280 |
+
# Expose a **pure API** endpoint that becomes an MCP tool but does not show a UI.
|
281 |
+
with gr.Blocks() as mcp_only_endpoints:
|
282 |
+
gr.Markdown("These endpoints are MCP/API only and have no visible UI.", show_label=False)
|
283 |
+
|
284 |
+
@gr.api # becomes an MCP tool and a REST API endpoint automatically
|
285 |
+
def api_generate_from_url(
|
286 |
+
video_url_or_b64: str,
|
287 |
+
text_prompt: str = "",
|
288 |
+
guidance_scale: float = 4.5,
|
289 |
+
num_inference_steps: int = 50,
|
290 |
+
sample_nums: int = 1,
|
291 |
+
) -> Dict[str, List[str]]:
|
292 |
+
"""
|
293 |
+
Generate Foley from a remote video URL or base64-encoded video.
|
294 |
+
Args:
|
295 |
+
video_url_or_b64: http(s) URL or data/base64 string of a short video (mp4).
|
296 |
+
text_prompt: Optional audio description (English).
|
297 |
+
guidance_scale: CFG scale (1.0β10.0).
|
298 |
+
num_inference_steps: Denoising steps (10β100).
|
299 |
+
sample_nums: Number of variants to return (1β6).
|
300 |
+
Returns:
|
301 |
+
dict with { "videos": [paths], "message": str }
|
302 |
+
"""
|
303 |
+
if _model_dict is None or _cfg is None:
|
304 |
+
raise RuntimeError("Model not loaded. Call /load_model tool or use the UI once.")
|
305 |
+
|
306 |
+
local_path = _normalize_video_input(video_url_or_b64)
|
307 |
+
return _api_generate_from_local(local_path, text_prompt, guidance_scale, num_inference_steps, sample_nums)
|
308 |
+
|
309 |
+
# Tiny status resource & prompt to help MCP clients
|
310 |
+
@gr.mcp.resource("shortifoley://status")
|
311 |
+
def shortifoley_status() -> str:
|
312 |
+
"""Return a simple readiness string for MCP clients."""
|
313 |
+
ready = _model_dict is not None and _cfg is not None
|
314 |
+
dev = "cuda" if (_device and _device.type == "cuda") else ("mps" if (_device and _device.type == "mps") else "cpu")
|
315 |
+
return f"ShortiFoley status: {'ready' if ready else 'loading'} | device={dev} | outputs={GALLERY_DIR}"
|
316 |
+
|
317 |
+
@gr.mcp.prompt()
|
318 |
+
def foley_prompt(name: str = "default") -> str:
|
319 |
+
"""A reusable prompt template for generating Foley."""
|
320 |
+
return (
|
321 |
+
"Describe the expected environmental sound precisely. Mention material, rhythm, intensity, and ambience.\n"
|
322 |
+
"Example: 'Soft leather footfalls on wet pavement with distant traffic hiss; occasional splashes.'"
|
323 |
+
)
|
324 |
+
|
325 |
+
|
326 |
+
# -----------------
|
327 |
+
# Gradio UI (Blocks)
|
328 |
+
# -----------------
|
329 |
+
def create_ui() -> gr.Blocks:
|
330 |
+
with gr.Blocks(
|
331 |
+
title="ShortiFoley β HunyuanVideo-Foley",
|
332 |
+
css="""
|
333 |
+
.main-header{ text-align:center; padding:1.5rem; border-radius:16px; background:linear-gradient(135deg,#667eea,#764ba2); color:white; }
|
334 |
+
.card{ background:white; border:1px solid #e1e5e9; border-radius:16px; padding:1rem; box-shadow:0 8px 32px rgba(0,0,0,.06); }
|
335 |
+
.generate-btn button{ font-weight:700; }
|
336 |
+
"""
|
337 |
+
) as demo:
|
338 |
+
|
339 |
+
gr.HTML(f"<div class='main-header'><h1>{SPACE_TITLE}</h1><p>{SPACE_TAGLINE}</p></div>")
|
340 |
+
|
341 |
+
with gr.Row():
|
342 |
+
with gr.Column(scale=1, elem_classes=["card"]):
|
343 |
+
gr.Markdown("### πΉ Input")
|
344 |
+
video_input = gr.Video(label="Upload Video", height=300)
|
345 |
+
text_input = gr.Textbox(
|
346 |
+
label="π― Audio Description (optional, English)",
|
347 |
+
placeholder="e.g., Quick rubber-soled footsteps on tile; echoey hallway."
|
348 |
+
)
|
349 |
with gr.Row():
|
350 |
+
guidance_scale = gr.Slider(1.0, 10.0, value=4.5, step=0.1, label="CFG Scale")
|
351 |
+
steps = gr.Slider(10, 100, value=50, step=5, label="Steps")
|
352 |
+
samples = gr.Slider(1, 6, value=1, step=1, label="Variants")
|
353 |
+
|
354 |
+
generate = gr.Button("π΅ Generate Audio", variant="primary", elem_classes=["generate-btn"])
|
355 |
+
|
356 |
+
with gr.Column(scale=1, elem_classes=["card"]):
|
357 |
+
gr.Markdown("### π₯ Result(s)")
|
358 |
+
v1 = gr.Video(label="Sample 1", height=260, visible=True)
|
359 |
+
v2 = gr.Video(label="Sample 2", height=160, visible=False)
|
360 |
+
v3 = gr.Video(label="Sample 3", height=160, visible=False)
|
361 |
+
v4 = gr.Video(label="Sample 4", height=160, visible=False)
|
362 |
+
v5 = gr.Video(label="Sample 5", height=160, visible=False)
|
363 |
+
v6 = gr.Video(label="Sample 6", height=160, visible=False)
|
364 |
+
status = gr.Textbox(label="Status", interactive=False)
|
365 |
+
|
366 |
+
with gr.Tab("π Gallery"):
|
367 |
+
gr.Markdown("Latest generated videos (autosaved to `outputs/`).")
|
368 |
+
gallery = gr.Gallery(
|
369 |
+
value=_list_gallery(),
|
370 |
+
columns=3,
|
371 |
+
preview=True,
|
372 |
+
label="Saved Results"
|
373 |
+
)
|
374 |
+
refresh = gr.Button("π Refresh Gallery")
|
375 |
+
|
376 |
+
# Event handlers
|
377 |
+
def _process(
|
378 |
+
video_file, text_prompt, cfg, nsteps, nsamples
|
379 |
+
) -> Tuple[Optional[str], Optional[str], Optional[str], Optional[str], Optional[str], Optional[str], str]:
|
380 |
+
outs, msg = infer_single_video(video_file, text_prompt, cfg, nsteps, nsamples)
|
381 |
+
# set visibilities based on how many were generated
|
382 |
+
vis = [gr.update(visible=i < len(outs), value=(outs[i] if i < len(outs) else None)) for i in range(6)]
|
383 |
+
# update gallery (prepend newest)
|
384 |
+
return (
|
385 |
+
*[v.value if isinstance(v, gr.Video) else None for v in []], # filler not used; kept for clarity
|
386 |
)
|
387 |
|
388 |
+
def _process_and_update(video_file, text_prompt, cfg, nsteps, nsamples):
|
389 |
+
outs, msg = infer_single_video(video_file, text_prompt, cfg, nsteps, nsamples)
|
390 |
+
updates = []
|
391 |
+
# six video slots
|
392 |
+
for i in range(6):
|
393 |
+
if i < len(outs):
|
394 |
+
updates.append(gr.update(visible=True, value=outs[i]))
|
395 |
+
else:
|
396 |
+
updates.append(gr.update(visible=False, value=None))
|
397 |
+
# status
|
398 |
+
updates.append(msg)
|
399 |
+
# refresh gallery implicitly
|
400 |
+
gallery_items = _list_gallery()
|
401 |
+
return (*updates, gr.update(value=gallery_items))
|
402 |
+
|
403 |
+
generate.click(
|
404 |
+
fn=_process_and_update,
|
405 |
+
inputs=[video_input, text_input, guidance_scale, steps, samples],
|
406 |
+
outputs=[v1, v2, v3, v4, v5, v6, status, gallery],
|
407 |
+
api_name="/infer",
|
408 |
+
api_description="Generate Foley audio for an uploaded video. Returns up to 6 video+audio files."
|
409 |
+
)
|
410 |
+
|
411 |
+
# Visibility toggling from samples slider
|
412 |
+
def _toggle_vis(n):
|
413 |
+
n = int(n)
|
414 |
+
return [
|
415 |
+
gr.update(visible=True),
|
416 |
+
gr.update(visible=n >= 2),
|
417 |
+
gr.update(visible=n >= 3),
|
418 |
+
gr.update(visible=n >= 4),
|
419 |
+
gr.update(visible=n >= 5),
|
420 |
+
gr.update(visible=n >= 6),
|
421 |
+
]
|
422 |
+
|
423 |
+
samples.change(_toggle_vis, inputs=[samples], outputs=[v1, v2, v3, v4, v5, v6])
|
424 |
+
|
425 |
+
refresh.click(lambda: gr.update(value=_list_gallery()), outputs=[gallery])
|
426 |
+
|
427 |
+
return demo
|
428 |
+
|
429 |
+
|
430 |
+
def set_seeds(s: int = 1):
|
431 |
+
random.seed(s)
|
432 |
+
np.random.seed(s)
|
433 |
+
torch.manual_seed(s)
|
434 |
+
|
435 |
+
|
436 |
+
# -------------
|
437 |
+
# App bootstrap
|
438 |
+
# -------------
|
439 |
+
if __name__ == "__main__":
|
440 |
+
# clean logger -> print to stdout
|
441 |
+
logger.remove()
|
442 |
+
logger.add(lambda m: print(m, end=""), level="INFO")
|
443 |
+
|
444 |
+
set_seeds(1)
|
445 |
+
|
446 |
+
logger.info("===== Application Startup =====\n")
|
447 |
+
prepare_once()
|
448 |
+
|
449 |
+
# Late import after repo present
|
450 |
+
sys.path.append(REPO_DIR)
|
451 |
+
from hunyuanvideo_foley.utils.model_utils import load_model, denoise_process # noqa: F401
|
452 |
+
from hunyuanvideo_foley.utils.feature_utils import feature_process # noqa: F401
|
453 |
+
from hunyuanvideo_foley.utils.media_utils import merge_audio_video # noqa: F401
|
454 |
+
|
455 |
+
msg = auto_load_models()
|
456 |
+
if not msg.startswith("β
"):
|
457 |
+
logger.error(f"[BOOT][ERROR] auto_load_models() failed:\n{msg}")
|
458 |
+
else:
|
459 |
+
logger.info(msg)
|
460 |
+
|
461 |
+
ui = create_ui()
|
462 |
+
|
463 |
+
# Mount MCP-only endpoints alongside the UI (optional but handy)
|
464 |
+
ui.blocks.append(mcp_only_endpoints)
|
465 |
+
|
466 |
+
# IMPORTANT: enable MCP server (tools/resources/prompts). This is all you need.
|
467 |
+
# See: https://www.gradio.app/guides/building-mcp-server-with-gradio
|
468 |
+
ui.launch(
|
469 |
+
server_name="0.0.0.0",
|
470 |
+
share=False,
|
471 |
+
show_error=True,
|
472 |
+
mcp_server=True, # <β MCP enabled
|
473 |
+
# ssr_mode=True (default in 5.x)
|
474 |
+
)
|