Spaces:
Running
Running
File size: 8,909 Bytes
57e04c3 1705c80 3cca1c2 1ca4ee7 c29409a 4a82770 1ca4ee7 3cca1c2 c29409a 3cca1c2 ab68bb9 1ca4ee7 1705c80 57e04c3 3cca1c2 57e04c3 3cca1c2 1ca4ee7 3cca1c2 c7d9d32 1705c80 3cca1c2 a8e02fb 3cca1c2 1061730 3cca1c2 1ca4ee7 1061730 3cca1c2 1ca4ee7 1061730 3cca1c2 57e04c3 3cca1c2 1ca4ee7 3cca1c2 1061730 3cca1c2 1061730 8bc48fc 1061730 57e04c3 3cca1c2 1ca4ee7 57e04c3 1ca4ee7 3cca1c2 1ca4ee7 57e04c3 3cca1c2 1ca4ee7 3cca1c2 1ca4ee7 3cca1c2 1061730 3cca1c2 1061730 3cca1c2 1ca4ee7 3cca1c2 1ca4ee7 3cca1c2 8bc48fc 3cca1c2 c29409a 1705c80 3cca1c2 c29409a 25a6ec3 c29409a 1061730 c29409a 25a6ec3 3cca1c2 c29409a 3cca1c2 c29409a 1ca4ee7 1061730 986cdbd 1061730 986cdbd 1061730 3cca1c2 1061730 3cca1c2 1061730 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
# memory.py
import re, time, hashlib, asyncio, os
from collections import defaultdict, deque
from typing import List, Dict
import numpy as np
import faiss
from sentence_transformers import SentenceTransformer
from google import genai # must be configured in app.py and imported globally
import logging
_LLM_SMALL = "gemini-2.5-flash-lite-preview-06-17"
# Load embedding model
EMBED = SentenceTransformer("/app/model_cache", device="cpu").half()
logger = logging.getLogger("rag-agent")
logging.basicConfig(level=logging.INFO, format="%(asctime)s — %(name)s — %(levelname)s — %(message)s", force=True) # Change INFO to DEBUG for full-ctx JSON loader
api_key = os.getenv("FlashAPI")
client = genai.Client(api_key=api_key)
class MemoryManager:
def __init__(self, max_users=1000, history_per_user=10, max_chunks=30):
self.text_cache = defaultdict(lambda: deque(maxlen=history_per_user))
self.chunk_index = defaultdict(self._new_index) # user_id -> faiss index
self.chunk_meta = defaultdict(list) # '' -> list[{text,tag}]
self.user_queue = deque(maxlen=max_users) # LRU of users
self.max_chunks = max_chunks # hard cap per user
self.chunk_cache = {} # hash(query+resp) -> [chunks]
# ---------- Public API ----------
def add_exchange(self, user_id: str, query: str, response: str, lang: str = "EN"):
self._touch_user(user_id)
self.text_cache[user_id].append(((query or "").strip(), (response or "").strip()))
if not response: return []
# Avoid re-chunking identical response
cache_key = hashlib.md5((query + response).encode()).hexdigest()
if cache_key in self.chunk_cache:
chunks = self.chunk_cache[cache_key]
else:
chunks = self.chunk_response(response, lang)
self.chunk_cache[cache_key] = chunks
text_set = set(c["text"] for c in self.chunk_meta[user_id]) # Set list of metadata for deduplication
# Store chunks → faiss
for chunk in chunks:
if chunk["text"] in text_set:
continue # skip duplicate
vec = self._embed(chunk["text"])
self.chunk_index[user_id].add(np.array([vec]))
# Store each chunk’s vector once and reuse it
chunk_with_vec = {
**chunk,
"vec": vec,
"timestamp": time.time(), # store creation time
"used": 0 # track usage
}
self.chunk_meta[user_id].append(chunk_with_vec)
# Trim to max_chunks to keep latency O(1)
if len(self.chunk_meta[user_id]) > self.max_chunks:
self._rebuild_index(user_id, keep_last=self.max_chunks)
def get_relevant_chunks(self, user_id: str, query: str, top_k: int = 3, min_sim: float = 0.30) -> List[str]:
"""Return texts of chunks whose cosine similarity ≥ min_sim."""
if self.chunk_index[user_id].ntotal == 0:
return []
# Encode chunk
qvec = self._embed(query)
sims, idxs = self.chunk_index[user_id].search(np.array([qvec]), k=top_k)
results = []
# Append related result with smart-decay to optimize storage and prioritize most-recent chat
for sim, idx in zip(sims[0], idxs[0]):
if idx < len(self.chunk_meta[user_id]) and sim >= min_sim:
chunk = self.chunk_meta[user_id][idx]
chunk["used"] += 1 # increment usage
# Decay function (you can tweak)
age_sec = time.time() - chunk["timestamp"]
decay = 1.0 / (1.0 + age_sec / 300) # 5-min half-life
score = sim * decay * (1 + 0.1 * chunk["used"])
# Append chunk with score
results.append((score, chunk))
# Sort result on best scored
results.sort(key=lambda x: x[0], reverse=True)
# logger.info(f"[Memory] RAG Retrieved Topic: {results}") # Inspect vector data
return [f"### Topic: {c['tag']}\n{c['text']}" for _, c in results]
def get_context(self, user_id: str, num_turns: int = 3) -> str:
history = list(self.text_cache.get(user_id, []))[-num_turns:]
return "\n".join(f"User: {q}\nBot: {r}" for q, r in history)
def reset(self, user_id: str):
self._drop_user(user_id)
# ---------- Internal helpers ----------
def _touch_user(self, user_id: str):
if user_id not in self.text_cache and len(self.user_queue) >= self.user_queue.maxlen:
self._drop_user(self.user_queue.popleft())
if user_id in self.user_queue:
self.user_queue.remove(user_id)
self.user_queue.append(user_id)
def _drop_user(self, user_id: str):
self.text_cache.pop(user_id, None)
self.chunk_index.pop(user_id, None)
self.chunk_meta.pop(user_id, None)
if user_id in self.user_queue:
self.user_queue.remove(user_id)
def _rebuild_index(self, user_id: str, keep_last: int):
"""Trim chunk list + rebuild FAISS index for user."""
self.chunk_meta[user_id] = self.chunk_meta[user_id][-keep_last:]
index = self._new_index()
# Store each chunk’s vector once and reuse it.
for chunk in self.chunk_meta[user_id]:
index.add(np.array([chunk["vec"]]))
self.chunk_index[user_id] = index
@staticmethod
def _new_index():
# Use cosine similarity (vectors must be L2-normalised)
return faiss.IndexFlatIP(384)
@staticmethod
def _embed(text: str):
vec = EMBED.encode(text, convert_to_numpy=True)
# L2 normalise for cosine on IndexFlatIP
return vec / (np.linalg.norm(vec) + 1e-9)
def chunk_response(self, response: str, lang: str) -> List[Dict]:
"""
Calls Gemini to:
- Translate (if needed)
- Chunk by context/topic (exclude disclaimer section)
- Summarise
Returns: [{"tag": ..., "text": ...}, ...]
"""
if not response: return []
# Gemini instruction
instructions = []
# if lang.upper() != "EN":
# instructions.append("- Translate the response to English.")
instructions.append("- Break the translated (or original) text into semantically distinct parts, grouped by medical topic or symptom.")
instructions.append("- For each part, generate a clear, concise summary. The summary may vary in length depending on the complexity of the topic — do not omit key clinical instructions.")
instructions.append("- At the start of each part, write `Topic: <one line description>`.")
instructions.append("- Separate each part using three dashes `---` on a new line.")
# if lang.upper() != "EN":
# instructions.append(f"Below is the user-provided medical response written in `{lang}`")
# Gemini prompt
prompt = f"""
You are a medical assistant helping organize and condense a clinical response.
------------------------
{response}
------------------------
Please perform the following tasks:
{chr(10).join(instructions)}
Output only the structured summaries, separated by dashes.
"""
retries = 0
while retries < 5:
try:
client = genai.Client(api_key=os.getenv("FlashAPI"))
result = client.models.generate_content(
model=_LLM_SMALL,
contents=prompt
# ,generation_config={"temperature": 0.4} # Skip temp configs for gem-flash
)
output = result.text.strip()
logger.info(f"[Memory] 📦 Gemini summarized chunk output: {output}")
return [
{"tag": self._quick_extract_topic(chunk), "text": chunk.strip()}
for chunk in output.split('---') if chunk.strip()
]
except Exception as e:
logger.warning(f"[Memory] ❌ Gemini chunking failed: {e}")
retries += 1
time.sleep(0.5)
return [{"tag": "general", "text": response.strip()}] # fallback
@staticmethod
def _quick_extract_topic(chunk: str) -> str:
"""Heuristically extract the topic from a chunk (title line or first 3 words)."""
# Expecting 'Topic: <something>'
match = re.search(r'^Topic:\s*(.+)', chunk, re.IGNORECASE | re.MULTILINE)
if match:
return match.group(1).strip()
lines = chunk.strip().splitlines()
for line in lines:
if len(line.split()) <= 8 and line.strip().endswith(":"):
return line.strip().rstrip(":")
return " ".join(chunk.split()[:3]).rstrip(":.,")
|