Spaces:
Sleeping
Sleeping
File size: 4,663 Bytes
4777736 cece503 c583b68 cece503 4777736 74ee35b 4777736 c6774b7 6aaff45 4777736 a75258d cece503 6b439b1 cece503 b5a2a43 d9e9d8b cece503 4777736 7d09e3e c23d4b5 1691afd f4e6d64 36d2d95 c956554 ed7617a c956554 b967551 80fd64a 75174ce 80fd64a 6aaff45 7cd0c55 6aaff45 36d2d95 55a30b0 36d2d95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import gradio as gr
from huggingface_hub import InferenceClient
from sentence_transformers import SentenceTransformer
import torch
# Load knowledge
with open("recipesplease.txt", "r", encoding="utf-8") as file:
knowledge = file.read()
cleaned_chunks = [chunk.strip() for chunk in knowledge.strip().split("\n") if chunk.strip()]
model = SentenceTransformer('all-MiniLM-L6-v2')
chunk_embeddings = model.encode(cleaned_chunks, convert_to_tensor=True)
def get_top_chunks(query):
query_embedding = model.encode(query, convert_to_tensor=True)
query_embedding_normalized = query_embedding / query_embedding.norm()
similarities = torch.matmul(chunk_embeddings, query_embedding_normalized)
top_indices = torch.topk(similarities, k=5).indices.tolist()
return [cleaned_chunks[i] for i in top_indices]
client = InferenceClient("Qwen/Qwen2.5-72B-Instruct")
def respond(message, history, cuisine, dietary_restrictions, allergies, preferred_ingredient):
response = ""
top_chunks = get_top_chunks(message)
top_chunks += get_top_chunks(cuisine)
top_chunks += get_top_chunks(str(dietary_restrictions)) # convert list to str
top_chunks += get_top_chunks(allergies)
top_chunks += get_top_chunks(preferred_ingredient)
messages = [
{
"role": "system",
"content": f"You are a friendly recipe chatbot named BiteBot that responds to the user with any recipe from this: {top_chunks}. Find a recipe that is {cuisine} cuisine. They have the dietary restrictions,{dietary_restrictions} and are allergic to {allergies}. For example, you can say Based on your preference for something sweet and given the recipes you provided, let me suggest a recipe that might be of interest to you. Do you want to try Elizabeth's Sweet Potato Casserole? Return the title to the user and ask if this is the recipe they want. If they say yes return the ingredients to the user and ask them if they want the instructions to this recipe (give them the instructions next if they say yes to this). If they say no ask if they want another recipe. Only pull recipes from the content {top_chunks} provided."
}
]
if history:
messages.extend(history)
messages.append({"role": "user", "content": message})
stream = client.chat_completion(
messages,
max_tokens=700,
temperature=1.5,top_p=0.7,
stream=True,
)
for message in stream:
token = message.choices[0].delta.content
if token is not None:
response += token
yield response
logo="banner.png"
theme = gr.themes.Monochrome(
primary_hue="orange",
secondary_hue="zinc",
neutral_hue=gr.themes.Color(c100="rgba(255, 227.4411088400613, 206.9078947368421, 1)", c200="rgba(255, 229.53334184977007, 218.0921052631579, 1)", c300="rgba(255, 234.91658150229947, 213.6184210526316, 1)", c400="rgba(189.603125, 154.41663986650488, 133.88641721491229, 1)", c50="#f3d1bbff", c500="rgba(170.2125, 139.18781968574348, 118.70082236842106, 1)", c600="rgba(193.32187499999998, 129.35648241888094, 111.07528782894737, 1)", c700="rgba(184.13125000000002, 141.9707339039346, 106.60230263157897, 1)", c800="rgba(156.06796875, 104.12209005333418, 69.81988075657894, 1)", c900="rgba(156.39999999999998, 117.22008175779253, 80.2578947368421, 1)", c950="rgba(158.43203125, 125.1788770279765, 97.28282620614036, 1)"),
text_size="sm",
spacing_size="md",
radius_size="sm",
).set(
body_background_fill='*primary_50',
body_background_fill_dark='*primary_50'
)
with gr.Blocks(theme=theme) as chatbot:
gr.Image(
value="Henrietta.png",
show_label=False,
show_share_button = False,
show_download_button = False)
gr.Markdown("### 👋 Welcome to BiteBot!\nTell me your preferred **cuisine**, any **dietary restrictions**, and **allergies**, and I’ll help you figure out what to cook. You can ask questions like:\n- _“What should I make tonight?”_\n- _“I'm feeling like eating something spicy.”_\n- _“Give me a recipe extra cheesy”_")
cuisine=gr.Textbox(label="cuisine")
dietary_restrictions=gr.Dropdown(["Gluten-Free","Dairy-Free","Vegan","Vegetarian","Keto","Kosher","No Soy","No Seafood","No Pork","No Beef"], label="dietary restrictions", multiselect=True,info="you can select multiple!")
allergies=gr.Textbox(label="allergies")
preferred_ingredients=gr.Textbox(label="preferred ingredients")
gr.ChatInterface(
fn=respond,
type="messages", additional_inputs=[cuisine,dietary_restrictions,allergies,preferred_ingredients]
)
chatbot.launch()
|