File size: 2,823 Bytes
4777736
cece503
c583b68
cece503
 
 
4777736
74ee35b
4777736
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cece503
 
 
4777736
cece503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4777736
7d09e3e
 
 
 
f4e6d64
 
 
 
 
 
 
 
 
 
 
 
36d2d95
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

import gradio as gr
from huggingface_hub import InferenceClient
from sentence_transformers import SentenceTransformer
import torch

# Load knowledge
with open("recipesplease.txt", "r", encoding="utf-8") as file:
    knowledge = file.read()
cleaned_chunks = [chunk.strip() for chunk in knowledge.strip().split("\n") if chunk.strip()]
model = SentenceTransformer('all-MiniLM-L6-v2')
chunk_embeddings = model.encode(cleaned_chunks, convert_to_tensor=True)
def get_top_chunks(query):
    query_embedding = model.encode(query, convert_to_tensor=True)
    query_embedding_normalized = query_embedding / query_embedding.norm()
    similarities = torch.matmul(chunk_embeddings, query_embedding_normalized)
    top_indices = torch.topk(similarities, k=5).indices.tolist()
    return [cleaned_chunks[i] for i in top_indices]
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
def respond(message, history):
    response = ""
    top_chunks = get_top_chunks(message)
    context = "\n".join(top_chunks)
    messages = [
        {
            "role": "system",
            "content": f"You are a friendly chatbot that responds to the user with this context {context}"
        }
    ]
    if history:
        messages.extend(history)
    messages.append({"role": "user", "content": message})
    stream = client.chat_completion(
        messages,
        max_tokens=300,
        temperature=1.2,
        stream=True,
    )
    for message in stream:
        token = message.choices[0].delta.content
        if token is not None:
            response += token
            yield response

with gr.Blocks() as demo:
    gr.Markdown("## 🧠🍴 The BiteBot")
    
theme = gr.themes.Monochrome(
    primary_hue="orange",
    secondary_hue="zinc",
    neutral_hue=gr.themes.Color(c100="rgba(255, 227.4411088400613, 206.9078947368421, 1)", c200="rgba(255, 229.53334184977007, 218.0921052631579, 1)", c300="rgba(255, 234.91658150229947, 213.6184210526316, 1)", c400="rgba(189.603125, 154.41663986650488, 133.88641721491229, 1)", c50="#f3d1bbff", c500="rgba(170.2125, 139.18781968574348, 118.70082236842106, 1)", c600="rgba(193.32187499999998, 129.35648241888094, 111.07528782894737, 1)", c700="rgba(184.13125000000002, 141.9707339039346, 106.60230263157897, 1)", c800="rgba(156.06796875, 104.12209005333418, 69.81988075657894, 1)", c900="rgba(156.39999999999998, 117.22008175779253, 80.2578947368421, 1)", c950="rgba(158.43203125, 125.1788770279765, 97.28282620614036, 1)"),
    text_size="sm",
    spacing_size="md",
    radius_size="sm",
).set(
    body_background_fill='*primary_50',
    body_background_fill_dark='*primary_50'
)


with gr.Blocks(theme=theme) as chatbot:
                    gr.ChatInterface(
                        fn=respond,
                        type="messages",
                    )
chatbot.launch()