File size: 3,833 Bytes
4777736
cece503
c583b68
cece503
 
 
4777736
74ee35b
4777736
 
 
 
 
 
 
 
 
 
c6774b7
55a30b0
4777736
 
 
cece503
 
 
c6774b7
cece503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4777736
7d09e3e
c23d4b5
1691afd
f4e6d64
 
 
 
 
 
 
 
 
 
 
 
36d2d95
 
c956554
 
 
 
 
80fd64a
75174ce
80fd64a
7cd0c55
 
55a30b0
36d2d95
55a30b0
36d2d95
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

import gradio as gr
from huggingface_hub import InferenceClient
from sentence_transformers import SentenceTransformer
import torch

# Load knowledge
with open("recipesplease.txt", "r", encoding="utf-8") as file:
    knowledge = file.read()
cleaned_chunks = [chunk.strip() for chunk in knowledge.strip().split("\n") if chunk.strip()]
model = SentenceTransformer('all-MiniLM-L6-v2')
chunk_embeddings = model.encode(cleaned_chunks, convert_to_tensor=True)
def get_top_chunks(query):
    query_embedding = model.encode(query, convert_to_tensor=True)
    query_embedding_normalized = query_embedding / query_embedding.norm()
    similarities = torch.matmul(chunk_embeddings, query_embedding_normalized)
    top_indices = torch.topk(similarities, k=5).indices.tolist()
    return [cleaned_chunks[i] for i in top_indices]
client = InferenceClient("Qwen/Qwen2.5-72B-Instruct")
def respond(message, history, cuisine, dietary_restrictions, allergies):
    response = ""
    top_chunks = get_top_chunks(message)
    context = "\n".join(top_chunks)
    messages = [
        {
            "role": "system",
            "content": f"You are a friendly recipe chatbot named BiteBot that responds to the user with any recipe from this: {context}. Find a recipe that is {cuisine} cuisine. They have the dietary restrictions,{dietary_restrictions} and are allergic to {allergies}. For example, you can say Based on your preference for something sweet and given the recipes you provided, let me suggest a recipe that might be of interest to you. Do you want to try Elizabeth's Sweet Potato Casserole? Return the title to the user and ask if this is the recipe they want. If they say yes return the recipe to the user, and if they say no ask if they want another recipe."
        }
    ]
    if history:
        messages.extend(history)
    messages.append({"role": "user", "content": message})
    stream = client.chat_completion(
        messages,
        max_tokens=300,
        temperature=1.2,
        stream=True,
    )
    for message in stream:
        token = message.choices[0].delta.content
        if token is not None:
            response += token
            yield response

logo="banner.png"

theme = gr.themes.Monochrome(
    primary_hue="orange",
    secondary_hue="zinc",
    neutral_hue=gr.themes.Color(c100="rgba(255, 227.4411088400613, 206.9078947368421, 1)", c200="rgba(255, 229.53334184977007, 218.0921052631579, 1)", c300="rgba(255, 234.91658150229947, 213.6184210526316, 1)", c400="rgba(189.603125, 154.41663986650488, 133.88641721491229, 1)", c50="#f3d1bbff", c500="rgba(170.2125, 139.18781968574348, 118.70082236842106, 1)", c600="rgba(193.32187499999998, 129.35648241888094, 111.07528782894737, 1)", c700="rgba(184.13125000000002, 141.9707339039346, 106.60230263157897, 1)", c800="rgba(156.06796875, 104.12209005333418, 69.81988075657894, 1)", c900="rgba(156.39999999999998, 117.22008175779253, 80.2578947368421, 1)", c950="rgba(158.43203125, 125.1788770279765, 97.28282620614036, 1)"),
    text_size="sm",
    spacing_size="md",
    radius_size="sm",
).set(
    body_background_fill='*primary_50',
    body_background_fill_dark='*primary_50'
)


with gr.Blocks(theme=theme) as chatbot:
    gr.Image(
	    value="banner.png", 
	    show_label=False, 
	    show_share_button = False, 
	    show_download_button = False)
    cuisine=gr.Textbox(label="cuisine")
    dietary_restrictions=gr.Dropdown(["Gluten-Free","Dairy-Free","Vegan","Vegetarian","Keto","Kosher","No Soy","No Seafood","No Pork","No Beef"], label="dietary restrictions", multiselect=True,info="you can select multiple!")
    allergies=gr.Textbox(label="allergies")
    gr.ChatInterface(
                    fn=respond,
                    type="messages", additional_inputs=[cuisine,dietary_restrictions,allergies]
                    )
   
chatbot.launch()