Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from sentence_transformers import SentenceTransformer | |
import torch | |
# Load knowledge | |
with open("recipesplease.txt", "r", encoding="utf-8") as file: | |
knowledge = file.read() | |
cleaned_chunks = [chunk.strip() for chunk in knowledge.strip().split("\n") if chunk.strip()] | |
model = SentenceTransformer('all-MiniLM-L6-v2') | |
chunk_embeddings = model.encode(cleaned_chunks, convert_to_tensor=True) | |
def get_top_chunks(query): | |
query_embedding = model.encode(query, convert_to_tensor=True) | |
query_embedding_normalized = query_embedding / query_embedding.norm() | |
similarities = torch.matmul(chunk_embeddings, query_embedding_normalized) | |
top_indices = torch.topk(similarities, k=5).indices.tolist() | |
return [cleaned_chunks[i] for i in top_indices] | |
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2") | |
def respond(message, history): | |
response = "" | |
top_chunks = get_top_chunks(message) | |
context = "\n".join(top_chunks) | |
messages = [ | |
{ | |
"role": "system", | |
"content": f"You are a friendly chatbot that responds to the user with this context {context}" | |
} | |
] | |
if history: | |
messages.extend(history) | |
messages.append({"role": "user", "content": message}) | |
stream = client.chat_completion( | |
messages, | |
max_tokens=300, | |
temperature=1.2, | |
stream=True, | |
) | |
for message in stream: | |
token = message.choices[0].delta.content | |
if token is not None: | |
response += token | |
yield response | |
with gr.Blocks() as demo: | |
gr.Markdown("## 🧠🍴 The BiteBot") | |
theme = gr.themes.Monochrome( | |
primary_hue="orange", | |
secondary_hue="zinc", | |
neutral_hue=gr.themes.Color(c100="rgba(255, 227.4411088400613, 206.9078947368421, 1)", c200="rgba(255, 229.53334184977007, 218.0921052631579, 1)", c300="rgba(255, 234.91658150229947, 213.6184210526316, 1)", c400="rgba(189.603125, 154.41663986650488, 133.88641721491229, 1)", c50="#f3d1bbff", c500="rgba(170.2125, 139.18781968574348, 118.70082236842106, 1)", c600="rgba(193.32187499999998, 129.35648241888094, 111.07528782894737, 1)", c700="rgba(184.13125000000002, 141.9707339039346, 106.60230263157897, 1)", c800="rgba(156.06796875, 104.12209005333418, 69.81988075657894, 1)", c900="rgba(156.39999999999998, 117.22008175779253, 80.2578947368421, 1)", c950="rgba(158.43203125, 125.1788770279765, 97.28282620614036, 1)"), | |
text_size="sm", | |
spacing_size="md", | |
radius_size="sm", | |
).set( | |
body_background_fill='*primary_50', | |
body_background_fill_dark='*primary_50' | |
) | |
with gr.Blocks(theme=theme) as chatbot: | |
gr.ChatInterface( | |
fn=respond, | |
type="messages", | |
) | |
chatbot.launch() | |