Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
#------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | |
# Step 1 - Semantic Search | |
from sentence_transformers import SentenceTransformer | |
import torch | |
# Step 2 - Semantic Search | |
# Open the water_cycle.txt file in read mode with UTF-8 encoding | |
with open("water_cycle.txt", "r", encoding="utf-8") as file: | |
# Read the entire contents of the file and store it in a variable | |
water_cycle_text = file.read() | |
# Print the text below | |
print(water_cycle_text) | |
# Step 3 - Semantic Search | |
def preprocess_text(text): | |
# Strip extra whitespace from the beginning and the end of the text | |
cleaned_text = text.strip() | |
# Split the cleaned_text by every newline character (\n) | |
chunks = cleaned_text.split("\n") | |
# Create an empty list to store cleaned chunks | |
cleaned_chunks = [] | |
# Write your for-in loop below to clean each chunk and add it to the cleaned_chunks list | |
for chunk in chunks: | |
stripped_chunk = chunk.strip() | |
if len(stripped_chunk) > 0: | |
cleaned_chunks.append(stripped_chunk) | |
# Print cleaned_chunks | |
print(cleaned_chunks) | |
# Print the length of cleaned_chunks | |
print(len(cleaned_chunks)) | |
# Return the cleaned_chunks | |
return cleaned_chunks | |
# Step 4 - Semantic Search | |
# Load the pre-trained embedding model that converts text to vectors | |
model = SentenceTransformer('all-MiniLM-L6-v2') | |
def create_embeddings(text_chunks): | |
# Convert each text chunk into a vector embedding and store as a tensor | |
chunk_embeddings = model.encode(text_chunks, convert_to_tensor=True) # Replace ... with the text_chunks list | |
# Print the chunk embeddings | |
print(chunk_embeddings) | |
# Print the shape of chunk_embeddings | |
print(chunk_embeddings.shape) | |
# Return the chunk_embeddings | |
return chunk_embeddings | |
# Call the create_embeddings function and store the result in a new chunk_embeddings variable | |
chunk_embeddings = create_embeddings(cleaned_chunks) # Complete this line | |
# Call the preprocess_text function and store the result in a cleaned_chunks variable | |
#cleaned_chunks = preprocess_text(water_cycle_text) # Complete this line | |
# Step 5 - Semantic Search | |
def get_top_chunks(query, chunk_embeddings, text_chunks): | |
# Convert the query text into a vector embedding | |
query_embedding = model.encode(query, convert_to_tensor = True) # Complete this line | |
# Normalize the query embedding to unit length for accurate similarity comparison | |
query_embedding_normalized = query_embedding / query_embedding.norm() | |
# Normalize all chunk embeddings to unit length for consistent comparison | |
chunk_embeddings_normalized = chunk_embeddings / chunk_embeddings.norm(dim=1, keepdim=True) | |
# Calculate cosine similarity between query and all chunks using matrix multiplication | |
similarities = torch.matmul(chunk_embeddings_normalized, query_embedding_normalized) # Complete this line | |
# Print the similarities | |
print(similarities) | |
# Find the indices of the 3 chunks with highest similarity scores | |
top_indices = torch.topk(similarities, k=3).indices | |
# Print the top indices | |
print(top_indices) | |
# Create an empty list to store the most relevant chunks | |
top_chunks = [] | |
# Loop through the top indices and retrieve the corresponding text chunks | |
for i in top_indices: | |
chunk = text_chunks[i] | |
top_chunks.append(chunk) | |
# Return the list of most relevant chunks | |
return top_chunks | |
# Step 6 - Semantic Search | |
# Call the get_top_chunks function with the original query | |
top_results = get_top_chunks("How does water get into the sky", chunk_embeddings, cleaned_chunks) # Complete this line | |
# Print the top results | |
print(top_results) | |
#------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | |
SPOONACULAR_API_KEY = "71259036cfb3405aa5d49c1220a988c5" | |
recipe_id_map = {} | |
# search for recipes | |
def search_recipes(ingredient, cuisine, dietary): | |
global recipe_id_map | |
url = "https://api.spoonacular.com/recipes/complexSearch" | |
params = { | |
"query": ingredient, | |
"cuisine": cuisine, | |
"diet": dietary, | |
"number": 3, | |
"apiKey": SPOONACULAR_API_KEY | |
} | |
res = requests.get(url, params=params) | |
data = res.json() | |
if "results" not in data or not data["results"]: | |
recipe_id_map = {} | |
return gr.update(choices=[], visible=True, label="No recipes found"), gr.update(value="No recipes found.") | |
recipe_id_map = {r["title"]: r["id"] for r in data["results"]} | |
return gr.update(choices=list(recipe_id_map.keys()), visible=True, label="Select a recipe"), gr.update(value="Select a recipe from the dropdown above.") | |
# get recipe details | |
def get_recipe_details(selected_title): | |
if not selected_title or selected_title not in recipe_id_map: | |
return "Please select a valid recipe." | |
recipe_id = recipe_id_map[selected_title] | |
url = f"https://api.spoonacular.com/recipes/{recipe_id}/information" | |
params = {"apiKey": SPOONACULAR_API_KEY} | |
res = requests.get(url, params=params) | |
data = res.json() | |
title = data.get("title", "Unknown Title") | |
time = data.get("readyInMinutes", "N/A") | |
instructions = data.get("instructions") or "No instructions available." | |
return f"### 🍽️ {title}\n**⏱️ Cook Time:** {time} minutes\n\n**📋 Instructions:**\n{instructions}" | |
# UI | |
with gr.Blocks() as demo: | |
gr.Markdown("## 🥗 The BiteBot") | |
with gr.Row(): | |
ingredient = gr.Textbox(label="Preferred Ingredient", placeholder="e.g., chicken") | |
cuisine = gr.Textbox(label="Preferred Cuisine", placeholder="e.g., Indian") | |
diet = gr.Textbox(label="Dietary Restrictions", placeholder="e.g., vegetarian") | |
search_button = gr.Button("Search Recipes") | |
recipe_dropdown = gr.Dropdown(label="Select a recipe", visible=False) | |
recipe_output = gr.Markdown() | |
search_button.click( | |
fn=search_recipes, | |
inputs=[ingredient, cuisine, diet], | |
outputs=[recipe_dropdown, recipe_output] | |
) | |
recipe_dropdown.change( | |
fn=get_recipe_details, | |
inputs=recipe_dropdown, | |
outputs=recipe_output | |
) | |
demo.launch() | |