bitebot_app / app.py
tanyaarora2608's picture
added steps 1-6 from semantic search
d61cdb6 verified
raw
history blame
6.39 kB
import gradio as gr
import requests
#------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# Step 1 - Semantic Search
from sentence_transformers import SentenceTransformer
import torch
# Step 2 - Semantic Search
# Open the water_cycle.txt file in read mode with UTF-8 encoding
with open("water_cycle.txt", "r", encoding="utf-8") as file:
# Read the entire contents of the file and store it in a variable
water_cycle_text = file.read()
# Print the text below
print(water_cycle_text)
# Step 3 - Semantic Search
def preprocess_text(text):
# Strip extra whitespace from the beginning and the end of the text
cleaned_text = text.strip()
# Split the cleaned_text by every newline character (\n)
chunks = cleaned_text.split("\n")
# Create an empty list to store cleaned chunks
cleaned_chunks = []
# Write your for-in loop below to clean each chunk and add it to the cleaned_chunks list
for chunk in chunks:
stripped_chunk = chunk.strip()
if len(stripped_chunk) > 0:
cleaned_chunks.append(stripped_chunk)
# Print cleaned_chunks
print(cleaned_chunks)
# Print the length of cleaned_chunks
print(len(cleaned_chunks))
# Return the cleaned_chunks
return cleaned_chunks
# Step 4 - Semantic Search
# Load the pre-trained embedding model that converts text to vectors
model = SentenceTransformer('all-MiniLM-L6-v2')
def create_embeddings(text_chunks):
# Convert each text chunk into a vector embedding and store as a tensor
chunk_embeddings = model.encode(text_chunks, convert_to_tensor=True) # Replace ... with the text_chunks list
# Print the chunk embeddings
print(chunk_embeddings)
# Print the shape of chunk_embeddings
print(chunk_embeddings.shape)
# Return the chunk_embeddings
return chunk_embeddings
# Call the create_embeddings function and store the result in a new chunk_embeddings variable
chunk_embeddings = create_embeddings(cleaned_chunks) # Complete this line
# Call the preprocess_text function and store the result in a cleaned_chunks variable
#cleaned_chunks = preprocess_text(water_cycle_text) # Complete this line
# Step 5 - Semantic Search
def get_top_chunks(query, chunk_embeddings, text_chunks):
# Convert the query text into a vector embedding
query_embedding = model.encode(query, convert_to_tensor = True) # Complete this line
# Normalize the query embedding to unit length for accurate similarity comparison
query_embedding_normalized = query_embedding / query_embedding.norm()
# Normalize all chunk embeddings to unit length for consistent comparison
chunk_embeddings_normalized = chunk_embeddings / chunk_embeddings.norm(dim=1, keepdim=True)
# Calculate cosine similarity between query and all chunks using matrix multiplication
similarities = torch.matmul(chunk_embeddings_normalized, query_embedding_normalized) # Complete this line
# Print the similarities
print(similarities)
# Find the indices of the 3 chunks with highest similarity scores
top_indices = torch.topk(similarities, k=3).indices
# Print the top indices
print(top_indices)
# Create an empty list to store the most relevant chunks
top_chunks = []
# Loop through the top indices and retrieve the corresponding text chunks
for i in top_indices:
chunk = text_chunks[i]
top_chunks.append(chunk)
# Return the list of most relevant chunks
return top_chunks
# Step 6 - Semantic Search
# Call the get_top_chunks function with the original query
top_results = get_top_chunks("How does water get into the sky", chunk_embeddings, cleaned_chunks) # Complete this line
# Print the top results
print(top_results)
#------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
SPOONACULAR_API_KEY = "71259036cfb3405aa5d49c1220a988c5"
recipe_id_map = {}
# search for recipes
def search_recipes(ingredient, cuisine, dietary):
global recipe_id_map
url = "https://api.spoonacular.com/recipes/complexSearch"
params = {
"query": ingredient,
"cuisine": cuisine,
"diet": dietary,
"number": 3,
"apiKey": SPOONACULAR_API_KEY
}
res = requests.get(url, params=params)
data = res.json()
if "results" not in data or not data["results"]:
recipe_id_map = {}
return gr.update(choices=[], visible=True, label="No recipes found"), gr.update(value="No recipes found.")
recipe_id_map = {r["title"]: r["id"] for r in data["results"]}
return gr.update(choices=list(recipe_id_map.keys()), visible=True, label="Select a recipe"), gr.update(value="Select a recipe from the dropdown above.")
# get recipe details
def get_recipe_details(selected_title):
if not selected_title or selected_title not in recipe_id_map:
return "Please select a valid recipe."
recipe_id = recipe_id_map[selected_title]
url = f"https://api.spoonacular.com/recipes/{recipe_id}/information"
params = {"apiKey": SPOONACULAR_API_KEY}
res = requests.get(url, params=params)
data = res.json()
title = data.get("title", "Unknown Title")
time = data.get("readyInMinutes", "N/A")
instructions = data.get("instructions") or "No instructions available."
return f"### 🍽️ {title}\n**⏱️ Cook Time:** {time} minutes\n\n**📋 Instructions:**\n{instructions}"
# UI
with gr.Blocks() as demo:
gr.Markdown("## 🥗 The BiteBot")
with gr.Row():
ingredient = gr.Textbox(label="Preferred Ingredient", placeholder="e.g., chicken")
cuisine = gr.Textbox(label="Preferred Cuisine", placeholder="e.g., Indian")
diet = gr.Textbox(label="Dietary Restrictions", placeholder="e.g., vegetarian")
search_button = gr.Button("Search Recipes")
recipe_dropdown = gr.Dropdown(label="Select a recipe", visible=False)
recipe_output = gr.Markdown()
search_button.click(
fn=search_recipes,
inputs=[ingredient, cuisine, diet],
outputs=[recipe_dropdown, recipe_output]
)
recipe_dropdown.change(
fn=get_recipe_details,
inputs=recipe_dropdown,
outputs=recipe_output
)
demo.launch()