Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import plotly.express as px | |
import plotly.graph_objects as go | |
from Eda_functions import * | |
import numpy as np | |
import re | |
import pickle | |
from streamlit_pandas_profiling import st_profile_report | |
import streamlit as st | |
import streamlit.components.v1 as components | |
import sweetviz as sv | |
from utilities import set_header,initialize_data,load_local_css | |
from st_aggrid import GridOptionsBuilder,GridUpdateMode | |
from st_aggrid import GridOptionsBuilder | |
from st_aggrid import AgGrid | |
import base64 | |
st.set_page_config( | |
page_title="Data Validation", | |
page_icon=":shark:", | |
layout="wide", | |
initial_sidebar_state='collapsed' | |
) | |
load_local_css('styles.css') | |
set_header() | |
#preprocessing | |
# with open('Categorised_data.pkl', 'rb') as file: | |
# Categorised_data = pickle.load(file) | |
# with open("edited_dataframe.pkl", 'rb') as file: | |
# df = pickle.load(file) | |
# date=df.index | |
# df.reset_index(inplace=True) | |
# df['Date'] = pd.to_datetime(date) | |
#prospects=pd.read_excel('EDA_Data.xlsx',sheet_name='Prospects') | |
#spends=pd.read_excel('EDA_Data.xlsx',sheet_name='SPEND INPUT') | |
#spends.columns=['Week','Streaming (Spends)','TV (Spends)','Search (Spends)','Digital (Spends)'] | |
#df=pd.concat([df,spends],axis=1) | |
#df['Date'] =pd.to_datetime(df['Date']).dt.strftime('%m/%d/%Y') | |
#df['Prospects']=prospects['Prospects'] | |
#df.drop(['Week'],axis=1,inplace=True) | |
st.title('Data Validation and Insights') | |
with open("Pickle_files/main_df",'rb') as f: | |
st.session_state['cleaned_data']= pickle.load(f) | |
with open("Pickle_files/category_dict",'rb') as c: | |
st.session_state['category_dict']=pickle.load(c) | |
# st.write(st.session_state['cleaned_data']) | |
target_variables=[st.session_state['category_dict'][key] for key in st.session_state['category_dict'].keys() if key =='Response_Metric'] | |
target_column = st.selectbox('Select the Target Feature/Dependent Variable (will be used in all charts as reference)',list(*target_variables)) | |
st.session_state['target_column']=target_column | |
fig=line_plot_target(st.session_state['cleaned_data'], target=target_column, title=f'{target_column} Over Time') | |
st.plotly_chart(fig, use_container_width=True) | |
media_channel=list(*[st.session_state['category_dict'][key] for key in st.session_state['category_dict'].keys() if key =='Media']) | |
# st.write(media_channel) | |
Non_media_channel=[col for col in st.session_state['cleaned_data'].columns if col not in media_channel] | |
st.markdown('### Annual Data Summary') | |
st.dataframe(summary(st.session_state['cleaned_data'], media_channel+[target_column], spends=None,Target=True), use_container_width=True) | |
if st.checkbox('Show raw data'): | |
st.write(pd.concat([pd.to_datetime(st.session_state['cleaned_data']['Date']).dt.strftime('%m/%d/%Y'),st.session_state['cleaned_data'].select_dtypes(np.number).applymap(format_numbers)],axis=1)) | |
col1 = st.columns(1) | |
if "selected_feature" not in st.session_state: | |
st.session_state['selected_feature']=None | |
st.header('1. Media Channels') | |
if 'Validation' not in st.session_state: | |
st.session_state['Validation']=[] | |
eda_columns=st.columns(2) | |
with eda_columns[0]: | |
if st.button('Generate Profile Report'): | |
pr = st.session_state['cleaned_data'].profile_report() | |
pr.to_file("Profile_Report.html") | |
with open("Profile_Report.html", "rb") as f: | |
profile_report_html = f.read() | |
b64 = base64.b64encode(profile_report_html).decode() | |
href = f'<a href="data:text/html;base64,{b64}" download="Profile_Report.html">Download Profile Report</a>' | |
st.markdown(href, unsafe_allow_html=True) | |
with eda_columns[1]: | |
if st.button('Generate Sweetviz Report'): | |
def generate_report_with_target(df, target_feature): | |
report = sv.analyze([df, "Dataset"], target_feat=target_feature) | |
return report | |
report = generate_report_with_target(st.session_state['cleaned_data'], target_feature=target_column) | |
report.show_html() | |
selected_media = st.selectbox('Select media', np.unique([Categorised_data[col]['VB'] for col in media_channel])) | |
# selected_feature=st.multiselect('Select Metric', df.columns[df.columns.str.contains(selected_media,case=False)]) | |
st.session_state["selected_feature"]=st.selectbox('Select Metric',[col for col in media_channel if Categorised_data[col]['VB'] in selected_media ] ) | |
spends_features=[col for col in df.columns if 'spends' in col.lower() or 'cost' in col.lower()] | |
spends_feature=[col for col in spends_features if col.split('_')[0] in st.session_state["selected_feature"].split('_')[0]] | |
#st.write(spends_features) | |
#st.write(spends_feature) | |
#st.write(selected_feature) | |
val_variables=[col for col in media_channel if col!='Date'] | |
if len(spends_feature)==0: | |
st.warning('No spends varaible available for the selected metric in data') | |
else: | |
st.write(f'Selected spends variable {spends_feature[0]} if wrong please name the varaibles properly') | |
# Create the dual-axis line plot | |
fig_row1 = line_plot(df, x_col='Date', y1_cols=[st.session_state["selected_feature"]], y2_cols=[target_column], title=f'Analysis of {st.session_state["selected_feature"]} and {[target_column][0]} Over Time') | |
st.plotly_chart(fig_row1, use_container_width=True) | |
st.markdown('### Annual Data Summary') | |
st.dataframe(summary(df,[st.session_state["selected_feature"]],spends=spends_feature[0]),use_container_width=True) | |
if st.button('Validate'): | |
st.session_state['Validation'].append(st.session_state["selected_feature"]) | |
if st.checkbox('Validate all'): | |
st.session_state['Validation'].extend(val_variables) | |
st.success('All media variables are validated ✅') | |
if len(set(st.session_state['Validation']).intersection(val_variables))!=len(val_variables): | |
#st.write(st.session_state['Validation']) | |
validation_data=pd.DataFrame({'Variables':val_variables, | |
'Validated':[1 if col in st.session_state['Validation'] else 0 for col in val_variables], | |
'Bucket':[Categorised_data[col]['VB'] for col in val_variables]}) | |
gd=GridOptionsBuilder.from_dataframe(validation_data) | |
gd.configure_pagination(enabled=True) | |
gd.configure_selection(use_checkbox=True,selection_mode='multiple') | |
#gd.configure_selection_toggle_all(None, show_toggle_all=True) | |
#gd.configure_columns_auto_size_mode(GridOptionsBuilder.configure_columns) | |
gridoptions=gd.build() | |
#st.text(st.session_state['Validation']) | |
table = AgGrid(validation_data,gridOptions=gridoptions,update_mode=GridUpdateMode.SELECTION_CHANGED,fit_columns_on_grid_load=True) | |
#st.table(table) | |
selected_rows = table["selected_rows"] | |
st.session_state['Validation'].extend([col['Variables'] for col in selected_rows]) | |
not_validated_variables = [col for col in val_variables if col not in st.session_state["Validation"]] | |
if not_validated_variables: | |
not_validated_message = f'The following variables are not validated:\n{" , ".join(not_validated_variables)}' | |
st.warning(not_validated_message) | |
st.header('2. Non Media Variables') | |
selected_columns_row = [col for col in df.columns if ("imp" not in col.lower()) and ('cli' not in col.lower() ) and ('spend' not in col.lower()) and col!='Date'] | |
selected_columns_row4 = st.selectbox('Select Channel',selected_columns_row ) | |
if not selected_columns_row4: | |
st.warning('Please select at least one.') | |
else: | |
# Create the dual-axis line plot | |
fig_row4 = line_plot(df, x_col='Date', y1_cols=[selected_columns_row4], y2_cols=[target_column], title=f'Analysis of {selected_columns_row4} and {target_column} Over Time') | |
st.plotly_chart(fig_row4, use_container_width=True) | |
selected_non_media=selected_columns_row4 | |
sum_df = df[['Date', selected_non_media,target_column]] | |
sum_df['Year']=pd.to_datetime(df['Date']).dt.year | |
#st.dataframe(df) | |
#st.dataframe(sum_df.head(2)) | |
sum_df=sum_df.groupby('Year').agg('sum') | |
sum_df.loc['Grand Total']=sum_df.sum() | |
sum_df=sum_df.applymap(format_numbers) | |
sum_df.fillna('-',inplace=True) | |
sum_df=sum_df.replace({"0.0":'-','nan':'-'}) | |
st.markdown('### Annual Data Summary') | |
st.dataframe(sum_df,use_container_width=True) | |
# if st.checkbox('Validate',key='2'): | |
# st.session_state['Validation'].append(selected_columns_row4) | |
# val_variables=[col for col in media_channel if col!='Date'] | |
# if st.checkbox('Validate all'): | |
# st.session_state['Validation'].extend(val_variables) | |
# validation_data=pd.DataFrame({'Variables':val_variables, | |
# 'Validated':[1 if col in st.session_state['Validation'] else 0 for col in val_variables], | |
# 'Bucket':[Categorised_data[col]['VB'] for col in val_variables]}) | |
# gd=GridOptionsBuilder.from_dataframe(validation_data) | |
# gd.configure_pagination(enabled=True) | |
# gd.configure_selection(use_checkbox=True,selection_mode='multiple') | |
# #gd.configure_selection_toggle_all(None, show_toggle_all=True) | |
# #gd.configure_columns_auto_size_mode(GridOptionsBuilder.configure_columns) | |
# gridoptions=gd.build() | |
# #st.text(st.session_state['Validation']) | |
# table = AgGrid(validation_data,gridOptions=gridoptions,update_mode=GridUpdateMode.SELECTION_CHANGED,fit_columns_on_grid_load=True) | |
# #st.table(table) | |
# selected_rows = table["selected_rows"] | |
# st.session_state['Validation'].extend([col['Variables'] for col in selected_rows]) | |
# not_validated_variables = [col for col in val_variables if col not in st.session_state["Validation"]] | |
# if not_validated_variables: | |
# not_validated_message = f'The following variables are not validated:\n{" , ".join(not_validated_variables)}' | |
# st.warning(not_validated_message) | |
options = list(df.select_dtypes(np.number).columns) | |
st.markdown(' ') | |
st.markdown(' ') | |
st.markdown('# Exploratory Data Analysis') | |
st.markdown(' ') | |
selected_options = [] | |
num_columns = 4 | |
num_rows = -(-len(options) // num_columns) # Ceiling division to calculate rows | |
# Create a grid of checkboxes | |
st.header('Select Features for Correlation Plot') | |
tick=False | |
if st.checkbox('Select all'): | |
tick=True | |
selected_options = [] | |
for row in range(num_rows): | |
cols = st.columns(num_columns) | |
for col in cols: | |
if options: | |
option = options.pop(0) | |
selected = col.checkbox(option,value=tick) | |
if selected: | |
selected_options.append(option) | |
# Display selected options | |
#st.write('You selected:', selected_options) | |
st.pyplot(correlation_plot(df,selected_options,target_column)) | |