paveclip-demo / paveclip_training.py
blessing.agyeikyem
Deploy space without large model file
4dc7e79
"""
PaveCLIP: Complete CLIP Training Framework for Pavement Data
Supports ViT/ResNet encoders, BERT/custom text encoders, SigLIP, Multi-GPU training
"""
import os
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import torchvision.transforms as transforms
from torchvision.models import resnet50, resnet101
import timm
from transformers import AutoTokenizer, AutoModel, BertModel, RobertaModel
from PIL import Image
import numpy as np
from pathlib import Path
import matplotlib.pyplot as plt
from sklearn.metrics.pairwise import cosine_similarity
import logging
from typing import Dict, List, Tuple, Optional, Union
import argparse
import time
import wandb
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class PavementDataset(Dataset):
"""
Dataset loader for pavement pretraining data with complex folder structure
"""
def __init__(self, data_dir: str, transform=None, tokenizer=None, max_length=77):
self.data_dir = Path(data_dir)
self.transform = transform
self.tokenizer = tokenizer
self.max_length = max_length
self.samples = []
logger.info(f"Loading dataset from {data_dir}")
self._load_dataset()
logger.info(f"Loaded {len(self.samples)} samples from {self._get_unique_images()} unique images")
def _load_dataset(self):
"""Load all JSON files and collect image-text pairs"""
json_files = list(self.data_dir.rglob("*.json"))
for json_file in json_files:
try:
with open(json_file, 'r') as f:
data = json.load(f)
# Handle different JSON structures
if isinstance(data, list):
# List of samples
for item in data:
self._process_sample(item, json_file.parent)
elif isinstance(data, dict):
# Single sample or nested structure
if "conversations" in data:
self._process_sample(data, json_file.parent)
else:
# Check if it's a collection
for key, value in data.items():
if isinstance(value, dict) and "conversations" in value:
self._process_sample(value, json_file.parent)
elif isinstance(value, list):
for item in value:
if isinstance(item, dict) and "conversations" in item:
self._process_sample(item, json_file.parent)
except Exception as e:
logger.warning(f"Error loading {json_file}: {e}")
def _process_sample(self, sample: dict, base_path: Path):
"""Process individual sample and extract image-text pair"""
try:
image_path = sample.get("image", "")
conversations = sample.get("conversations", [])
if not image_path or not conversations:
return
# Find text response from GPT
text = ""
for conv in conversations:
if conv.get("from") == "gpt":
text = conv.get("value", "")
break
if not text:
return
# Resolve image path (relative to base_path)
full_image_path = base_path / image_path
if not full_image_path.exists():
# Try different relative paths
for possible_base in [base_path, base_path.parent, base_path.parent.parent]:
test_path = possible_base / image_path
if test_path.exists():
full_image_path = test_path
break
if full_image_path.exists():
self.samples.append({
"image_path": str(full_image_path),
"text": text.strip(),
"id": sample.get("id", f"sample_{len(self.samples)}")
})
except Exception as e:
logger.warning(f"Error processing sample: {e}")
def _get_unique_images(self):
"""Get count of unique images"""
return len(set(sample["image_path"] for sample in self.samples))
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
sample = self.samples[idx]
# Load and transform image
try:
image = Image.open(sample["image_path"]).convert("RGB")
if self.transform:
image = self.transform(image)
except Exception as e:
logger.warning(f"Error loading image {sample['image_path']}: {e}")
# Return a black image as fallback
image = torch.zeros(3, 224, 224)
# Tokenize text
text = sample["text"]
if self.tokenizer:
tokens = self.tokenizer(
text,
max_length=self.max_length,
padding='max_length',
truncation=True,
return_tensors='pt'
)
return {
"image": image,
"input_ids": tokens["input_ids"].squeeze(),
"attention_mask": tokens["attention_mask"].squeeze(),
"text": text
}
else:
return {
"image": image,
"text": text
}
class VisionEncoder(nn.Module):
"""Flexible vision encoder supporting ViT and ResNet architectures"""
def __init__(self, model_name: str, embed_dim: int = 512, pretrained: bool = True):
super().__init__()
self.model_name = model_name
self.embed_dim = embed_dim
self.expected_image_size = 224 # Default
# Try to determine architecture type
if any(arch in model_name.lower() for arch in ["vit", "deit", "swin", "beit", "cait"]):
self._setup_vit(model_name, pretrained)
elif "resnet" in model_name.lower():
self._setup_resnet(model_name, pretrained)
else:
# 🔧 GENERIC TIMM MODEL LOADING
self._setup_generic_timm(model_name, pretrained)
# Projection head
self.projection = nn.Linear(self.feature_dim, embed_dim)
def _setup_generic_timm(self, model_name: str, pretrained: bool):
"""Setup any TIMM model generically"""
try:
self.backbone = timm.create_model(
model_name,
pretrained=pretrained,
num_classes=0 # Remove classification head
)
# Auto-detect input size and feature dimension
self.feature_dim = None
test_sizes = [224, 288, 336, 384, 448, 512]
for test_size in test_sizes:
try:
with torch.no_grad():
dummy_input = torch.randn(1, 3, test_size, test_size)
features = self.backbone(dummy_input)
# Handle different output formats
if len(features.shape) > 2:
features = features.view(features.size(0), -1)
self.feature_dim = features.shape[1]
self.expected_image_size = test_size
logger.info(f"Generic model {model_name} expects {test_size}x{test_size}{self.feature_dim}D")
break
except Exception:
continue
if self.feature_dim is None:
raise Exception("Could not determine model specifications")
except Exception as e:
logger.error(f"Failed to load {model_name}: {e}")
raise
def _setup_vit(self, model_name: str, pretrained: bool):
"""Setup Vision Transformer - works with any TIMM ViT model"""
# Known mappings for convenience
vit_mapping = {
"vit-b/16": "vit_base_patch16_224",
"vit-b/32": "vit_base_patch32_224",
"vit-l/14": "vit_large_patch14_224",
"vit-l/14@336": "vit_large_patch14_clip_336",
"vit-h/14": "vit_huge_patch14_clip_378"
}
# Use mapping if available, otherwise use model name directly
timm_name = vit_mapping.get(model_name.lower(), model_name)
try:
self.backbone = timm.create_model(
timm_name,
pretrained=pretrained,
num_classes=0
)
# 🔧 AUTO-DETECT input size by trying common sizes
self.feature_dim = None
test_sizes = [224, 336, 378, 384, 512] # Common ViT sizes
for test_size in test_sizes:
try:
with torch.no_grad():
dummy_input = torch.randn(1, 3, test_size, test_size)
features = self.backbone(dummy_input)
self.feature_dim = features.shape[1]
self.expected_image_size = test_size
logger.info(f"Model {timm_name} expects {test_size}x{test_size} input")
break
except Exception:
continue
if self.feature_dim is None:
raise Exception("Could not determine input size for model")
except Exception as e:
logger.warning(f"Failed to load {timm_name}: {e}")
logger.warning("Falling back to basic ViT")
self.backbone = timm.create_model("vit_base_patch16_224", pretrained=pretrained, num_classes=0)
self.feature_dim = 768
self.expected_image_size = 224
def _setup_resnet(self, model_name: str, pretrained: bool):
"""Setup ResNet"""
if "resnet50" in model_name.lower():
self.backbone = resnet50(pretrained=pretrained)
elif "resnet101" in model_name.lower():
self.backbone = resnet101(pretrained=pretrained)
else:
self.backbone = resnet50(pretrained=pretrained)
# Remove classification head
self.backbone = nn.Sequential(*list(self.backbone.children())[:-1])
self.feature_dim = 2048 # ResNet feature dimension
def forward(self, x):
features = self.backbone(x)
if len(features.shape) > 2:
features = features.view(features.size(0), -1)
return self.projection(features)
class TextEncoder(nn.Module):
"""Flexible text encoder supporting various transformer models"""
def __init__(self, model_name: str = "bert-base-uncased", embed_dim: int = 512,
max_length: int = 77, pretrained: bool = True):
super().__init__()
self.model_name = model_name
self.embed_dim = embed_dim
self.max_length = max_length
if not pretrained:
# Initialize from scratch
if "bert" in model_name:
from transformers import BertConfig
config = BertConfig(vocab_size=30522, max_position_embeddings=max_length)
self.transformer = BertModel(config)
else:
self.transformer = AutoModel.from_pretrained(model_name,
ignore_mismatched_sizes=True)
else:
self.transformer = AutoModel.from_pretrained(model_name)
# Get hidden dimension
self.hidden_dim = self.transformer.config.hidden_size
# Projection head
self.projection = nn.Linear(self.hidden_dim, embed_dim)
def forward(self, input_ids, attention_mask=None):
outputs = self.transformer(input_ids=input_ids, attention_mask=attention_mask)
# Use [CLS] token or mean pooling
if hasattr(outputs, 'pooler_output') and outputs.pooler_output is not None:
features = outputs.pooler_output
else:
# Mean pooling over sequence length
features = outputs.last_hidden_state.mean(dim=1)
return self.projection(features)
class CLIPModel(nn.Module):
"""CLIP model with contrastive learning"""
def __init__(self, vision_model: str, text_model: str, embed_dim: int = 512,
temperature: float = 0.07, vision_pretrained: bool = True,
text_pretrained: bool = True):
super().__init__()
self.vision_encoder = VisionEncoder(vision_model, embed_dim, vision_pretrained)
self.text_encoder = TextEncoder(text_model, embed_dim, pretrained=text_pretrained)
# Temperature parameter for contrastive loss
self.temperature = nn.Parameter(torch.tensor(temperature))
def forward(self, images, input_ids, attention_mask=None):
# Encode images and text
image_features = self.vision_encoder(images)
text_features = self.text_encoder(input_ids, attention_mask)
# Normalize features
image_features = F.normalize(image_features, p=2, dim=1)
text_features = F.normalize(text_features, p=2, dim=1)
return image_features, text_features
def compute_loss(self, image_features, text_features):
"""Compute contrastive loss"""
batch_size = image_features.shape[0]
# Compute similarity matrix
logits = torch.matmul(image_features, text_features.T) / self.temperature
# Labels are diagonal (each image matches its corresponding text)
labels = torch.arange(batch_size, device=logits.device)
# Compute cross-entropy loss for both directions
loss_img = F.cross_entropy(logits, labels)
loss_txt = F.cross_entropy(logits.T, labels)
return (loss_img + loss_txt) / 2
class SigLIPModel(nn.Module):
"""SigLIP model with sigmoid loss instead of contrastive loss"""
def __init__(self, vision_model: str, text_model: str, embed_dim: int = 512,
temperature: float = 0.07, vision_pretrained: bool = True,
text_pretrained: bool = True):
super().__init__()
self.vision_encoder = VisionEncoder(vision_model, embed_dim, vision_pretrained)
self.text_encoder = TextEncoder(text_model, embed_dim, pretrained=text_pretrained)
# Temperature parameter
self.temperature = nn.Parameter(torch.tensor(temperature))
def forward(self, images, input_ids, attention_mask=None):
# Encode images and text
image_features = self.vision_encoder(images)
text_features = self.text_encoder(input_ids, attention_mask)
# Normalize features
image_features = F.normalize(image_features, p=2, dim=1)
text_features = F.normalize(text_features, p=2, dim=1)
return image_features, text_features
def compute_loss(self, image_features, text_features):
"""Compute SigLIP loss"""
batch_size = image_features.shape[0]
# Compute similarity matrix
logits = torch.matmul(image_features, text_features.T) / self.temperature
# Create positive and negative labels
labels = torch.eye(batch_size, device=logits.device)
labels = labels * 2 - 1 # Convert to -1/1 labels
# SigLIP loss: -log(sigmoid(z_i * y_i))
loss = -F.logsigmoid(logits * labels).mean()
return loss
class PaveCLIPTrainer:
"""Complete training framework for PaveCLIP"""
def __init__(self, config: Dict):
self.config = config
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.distributed = False
self.rank = 0
# Setup distributed training if specified
if config.get("distributed", False):
self._setup_distributed()
# Initialize model
self._setup_model()
# Setup data
self._setup_data()
# Setup optimization
self._setup_optimization()
# Setup logging
if config.get("wandb", False) and (not self.distributed or self.rank == 0):
wandb.init(project="paveclip", config=config)
def _setup_distributed(self):
"""Setup distributed training"""
self.distributed = True
self.rank = int(os.environ.get("LOCAL_RANK", 0))
self.world_size = int(os.environ.get("WORLD_SIZE", 1))
dist.init_process_group(backend="nccl")
torch.cuda.set_device(self.rank)
self.device = torch.device(f"cuda:{self.rank}")
logger.info(f"Initialized distributed training: rank {self.rank}/{self.world_size}")
def _setup_model(self):
"""Initialize the model"""
model_type = self.config.get("model_type", "clip").lower()
if model_type == "clip":
self.model = CLIPModel(
vision_model=self.config["vision_model"],
text_model=self.config["text_model"],
embed_dim=self.config.get("embed_dim", 512),
temperature=self.config.get("temperature", 0.07),
vision_pretrained=self.config.get("vision_pretrained", True),
text_pretrained=self.config.get("text_pretrained", True)
)
elif model_type == "siglip":
self.model = SigLIPModel(
vision_model=self.config["vision_model"],
text_model=self.config["text_model"],
embed_dim=self.config.get("embed_dim", 512),
temperature=self.config.get("temperature", 0.07),
vision_pretrained=self.config.get("vision_pretrained", True),
text_pretrained=self.config.get("text_pretrained", True)
)
else:
raise ValueError(f"Unsupported model type: {model_type}")
self.model = self.model.to(self.device)
# Wrap with DDP for distributed training
if hasattr(self, 'distributed') and self.distributed:
self.model = DDP(self.model, device_ids=[self.rank])
def _setup_data(self):
"""Setup data loaders"""
# Image transforms
if "vit" in self.config["vision_model"].lower():
image_size = 336 if "@336" in self.config["vision_model"] else 224
else:
image_size = 224
# Pavement-specific augmentations for robustness
train_transform = transforms.Compose([
transforms.Resize((image_size, image_size)),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomRotation(degrees=15), # Roads can be at angles
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.1, hue=0.05),
transforms.RandomGrayscale(p=0.1), # Some pavement images are grayscale
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
val_transform = transforms.Compose([
transforms.Resize((image_size, image_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Tokenizer
from transformers import AutoTokenizer
self.tokenizer = AutoTokenizer.from_pretrained(self.config["text_model"])
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Dataset
train_dataset = PavementDataset(
self.config["data_dir"],
transform=train_transform,
tokenizer=self.tokenizer,
max_length=self.config.get("max_length", 77)
)
# Split for validation if specified
if self.config.get("val_split", 0.1) > 0:
val_size = int(len(train_dataset) * self.config["val_split"])
train_size = len(train_dataset) - val_size
train_dataset, val_dataset = torch.utils.data.random_split(
train_dataset, [train_size, val_size]
)
val_dataset.dataset.transform = val_transform
else:
val_dataset = None
# Data loaders
train_sampler = DistributedSampler(train_dataset) if hasattr(self, 'distributed') and self.distributed else None
self.train_loader = DataLoader(
train_dataset,
batch_size=self.config["batch_size"],
shuffle=(train_sampler is None),
sampler=train_sampler,
num_workers=self.config.get("num_workers", 4),
pin_memory=True,
drop_last=True
)
if val_dataset:
val_sampler = DistributedSampler(val_dataset) if hasattr(self, 'distributed') and self.distributed else None
self.val_loader = DataLoader(
val_dataset,
batch_size=self.config["batch_size"],
shuffle=False,
sampler=val_sampler,
num_workers=self.config.get("num_workers", 4),
pin_memory=True
)
else:
self.val_loader = None
logger.info(f"Training samples: {len(train_dataset)}")
if val_dataset:
logger.info(f"Validation samples: {len(val_dataset)}")
def _setup_optimization(self):
"""Setup optimizer and scheduler"""
# Pavement-specific optimization strategy
# Different learning rates for vision and text encoders
vision_params = []
text_params = []
other_params = []
model = self.model.module if hasattr(self.model, 'module') else self.model
for name, param in model.named_parameters():
if 'vision_encoder' in name:
vision_params.append(param)
elif 'text_encoder' in name:
text_params.append(param)
else:
other_params.append(param)
# Different learning rates for different components
param_groups = [
{'params': vision_params, 'lr': self.config["learning_rate"] * 0.1}, # Lower LR for vision
{'params': text_params, 'lr': self.config["learning_rate"]}, # Standard LR for text
{'params': other_params, 'lr': self.config["learning_rate"]} # Standard LR for others
]
self.optimizer = torch.optim.AdamW(
param_groups,
weight_decay=self.config.get("weight_decay", 0.01)
)
# Learning rate scheduler
total_steps = len(self.train_loader) * self.config["epochs"]
warmup_steps = int(total_steps * self.config.get("warmup_ratio", 0.1))
self.scheduler = torch.optim.lr_scheduler.OneCycleLR(
self.optimizer,
max_lr=[group['lr'] for group in param_groups],
total_steps=total_steps,
pct_start=warmup_steps / total_steps,
anneal_strategy='cos'
)
def train_epoch(self, epoch: int):
"""Train for one epoch"""
self.model.train()
if hasattr(self, 'distributed') and self.distributed:
self.train_loader.sampler.set_epoch(epoch)
total_loss = 0
num_batches = len(self.train_loader)
pbar = tqdm(self.train_loader, desc=f"Epoch {epoch+1}") if (not hasattr(self, 'distributed') or self.rank == 0) else self.train_loader
for batch_idx, batch in enumerate(pbar):
images = batch["image"].to(self.device, non_blocking=True)
input_ids = batch["input_ids"].to(self.device, non_blocking=True)
attention_mask = batch["attention_mask"].to(self.device, non_blocking=True)
# Forward pass
image_features, text_features = self.model(images, input_ids, attention_mask)
# Compute loss
loss = self.model.module.compute_loss(image_features, text_features) if hasattr(self.model, 'module') else self.model.compute_loss(image_features, text_features)
# Backward pass
self.optimizer.zero_grad()
loss.backward()
# Gradient clipping for stability
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
self.optimizer.step()
self.scheduler.step()
total_loss += loss.item()
# Update progress bar
if hasattr(pbar, 'set_postfix'):
pbar.set_postfix({
'loss': f'{loss.item():.4f}',
'avg_loss': f'{total_loss/(batch_idx+1):.4f}',
'lr': f'{self.scheduler.get_last_lr()[0]:.2e}'
})
# Log to wandb
if self.config.get("wandb", False) and (not hasattr(self, 'distributed') or self.rank == 0):
wandb.log({
"train_loss": loss.item(),
"learning_rate": self.scheduler.get_last_lr()[0],
"epoch": epoch,
"step": epoch * num_batches + batch_idx
})
return total_loss / num_batches
def validate(self, epoch: int):
"""Validate the model"""
if self.val_loader is None:
return None
self.model.eval()
total_loss = 0
with torch.no_grad():
for batch in self.val_loader:
images = batch["image"].to(self.device, non_blocking=True)
input_ids = batch["input_ids"].to(self.device, non_blocking=True)
attention_mask = batch["attention_mask"].to(self.device, non_blocking=True)
# Forward pass
image_features, text_features = self.model(images, input_ids, attention_mask)
# Compute loss
loss = self.model.module.compute_loss(image_features, text_features) if hasattr(self.model, 'module') else self.model.compute_loss(image_features, text_features)
total_loss += loss.item()
avg_loss = total_loss / len(self.val_loader)
if self.config.get("wandb", False) and (not hasattr(self, 'distributed') or self.rank == 0):
wandb.log({
"val_loss": avg_loss,
"epoch": epoch
})
return avg_loss
def train(self):
"""Main training loop"""
logger.info("Starting training...")
best_val_loss = float('inf')
for epoch in range(self.config["epochs"]):
# Train
train_loss = self.train_epoch(epoch)
# Validate
val_loss = self.validate(epoch)
# Log epoch results
if not hasattr(self, 'distributed') or self.rank == 0:
logger.info(f"Epoch {epoch+1}/{self.config['epochs']}")
logger.info(f"Train Loss: {train_loss:.4f}")
if val_loss is not None:
logger.info(f"Val Loss: {val_loss:.4f}")
# Save checkpoint
if (not hasattr(self, 'distributed') or self.rank == 0) and val_loss is not None and val_loss < best_val_loss:
best_val_loss = val_loss
self.save_checkpoint(epoch, is_best=True)
# Regular checkpoint
if (epoch + 1) % self.config.get("save_every", 10) == 0:
if not hasattr(self, 'distributed') or self.rank == 0:
self.save_checkpoint(epoch, is_best=False)
def save_checkpoint(self, epoch: int, is_best: bool = False):
"""Save model checkpoint"""
model_state = self.model.module.state_dict() if hasattr(self.model, 'module') else self.model.state_dict()
checkpoint = {
'epoch': epoch,
'model_state_dict': model_state,
'optimizer_state_dict': self.optimizer.state_dict(),
'config': self.config
}
filename = f"paveclip_epoch_{epoch+1}.pt"
if is_best:
filename = "paveclip_best.pt"
save_path = Path(self.config["output_dir"]) / filename
save_path.parent.mkdir(parents=True, exist_ok=True)
torch.save(checkpoint, save_path)
logger.info(f"Saved checkpoint: {save_path}")
class PaveCLIPEvaluator:
"""Evaluation utilities for PaveCLIP"""
def __init__(self, model_path: str, config: Dict):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.config = config
# Load model
checkpoint = torch.load(model_path, map_location=self.device)
model_config = checkpoint['config']
# Initialize model
if model_config.get("model_type", "clip").lower() == "clip":
self.model = CLIPModel(
vision_model=model_config["vision_model"],
text_model=model_config["text_model"],
embed_dim=model_config.get("embed_dim", 512)
)
else:
self.model = SigLIPModel(
vision_model=model_config["vision_model"],
text_model=model_config["text_model"],
embed_dim=model_config.get("embed_dim", 512)
)
self.model.load_state_dict(checkpoint['model_state_dict'])
self.model = self.model.to(self.device)
self.model.eval()
# Setup tokenizer and transforms
from transformers import AutoTokenizer
self.tokenizer = AutoTokenizer.from_pretrained(model_config["text_model"])
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Image transforms
#image_size = 336 if "@336" in model_config["vision_model"] else 224
expected = getattr(self.model.vision_encoder, "expected_image_size", 224)
self.transform = transforms.Compose([
transforms.Resize((expected, expected)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
self.image_size = expected # keep for later use
def encode_images(self, image_paths: List[str]) -> torch.Tensor:
"""Encode list of images"""
features = []
with torch.no_grad():
for img_path in image_paths:
image = Image.open(img_path).convert("RGB")
image = self.transform(image).unsqueeze(0).to(self.device)
img_features, _ = self.model(image, torch.zeros(1, 1).long().to(self.device))
features.append(img_features.cpu())
return torch.cat(features, dim=0)
def encode_texts(self, texts: List[str]) -> torch.Tensor:
"""Encode list of texts"""
tokens = self.tokenizer(
texts,
max_length=77,
padding='max_length',
truncation=True,
return_tensors='pt'
)
# with torch.no_grad():
# tokens = {k: v.to(self.device) for k, v in tokens.items()}
# dummy_images = torch.zeros(len(texts), 3, 224, 224).to(self.device)
# _, text_features = self.model(dummy_images, tokens["input_ids"], tokens["attention_mask"])
# In PaveCLIPEvaluator.encode_texts
with torch.no_grad():
tokens = {k: v.to(self.device) for k, v in tokens.items()}
text_features = self.model.text_encoder(tokens["input_ids"], tokens["attention_mask"])
text_features = F.normalize(text_features, p=2, dim=1)
return text_features.cpu()
def zero_shot_classification(self, image_paths: List[str], class_texts: List[str]) -> Dict:
"""Perform zero-shot classification"""
logger.info("Performing zero-shot classification...")
# Encode images and texts
image_features = self.encode_images(image_paths)
text_features = self.encode_texts(class_texts)
# Compute similarities
similarities = torch.matmul(image_features, text_features.T)
predictions = similarities.argmax(dim=1)
# Compute accuracy if ground truth is available
results = {
"predictions": predictions.tolist(),
"similarities": similarities.tolist(),
"class_texts": class_texts
}
return results
def image_retrieval(self, query_text: str, image_paths: List[str], top_k: int = 5) -> List[Tuple[str, float]]:
"""Retrieve top-k images for a text query"""
logger.info(f"Retrieving top-{top_k} images for query: '{query_text}'")
# Encode query and images
text_features = self.encode_texts([query_text])
image_features = self.encode_images(image_paths)
# Compute similarities
similarities = torch.matmul(text_features, image_features.T).squeeze()
# Get top-k results
top_k_indices = similarities.argsort(descending=True)[:top_k]
results = []
for idx in top_k_indices:
results.append((image_paths[idx.item()], similarities[idx.item()].item()))
return results
def main():
"""Main training script"""
parser = argparse.ArgumentParser(description="Train PaveCLIP model")
# Model arguments
parser.add_argument("--model_type", default="clip", choices=["clip", "siglip"],
help="Model type to train")
parser.add_argument("--vision_model", default="vit-b/16",
help="Vision encoder (e.g., vit-b/16, vit-l/14@336, resnet50)")
parser.add_argument("--text_model", default="bert-base-uncased",
help="Text encoder (e.g., bert-base-uncased, roberta-base)")
parser.add_argument("--embed_dim", type=int, default=512,
help="Embedding dimension")
parser.add_argument("--vision_pretrained", action="store_true",
help="Use pretrained vision encoder")
parser.add_argument("--text_pretrained", action="store_true",
help="Use pretrained text encoder")
# Data arguments
parser.add_argument("--data_dir", required=True,
help="Path to Pavement_Pretraining_Data directory")
parser.add_argument("--val_split", type=float, default=0.1,
help="Validation split ratio")
parser.add_argument("--max_length", type=int, default=77,
help="Maximum text length")
# Training arguments
parser.add_argument("--batch_size", type=int, default=64,
help="Batch size")
parser.add_argument("--epochs", type=int, default=50,
help="Number of epochs")
parser.add_argument("--learning_rate", type=float, default=1e-4,
help="Learning rate")
parser.add_argument("--weight_decay", type=float, default=0.01,
help="Weight decay")
parser.add_argument("--temperature", type=float, default=0.07,
help="Temperature parameter")
parser.add_argument("--warmup_ratio", type=float, default=0.1,
help="Warmup ratio")
# System arguments
parser.add_argument("--num_workers", type=int, default=4,
help="Number of data loader workers")
parser.add_argument("--output_dir", default="./checkpoints",
help="Output directory for checkpoints")
parser.add_argument("--save_every", type=int, default=10,
help="Save checkpoint every N epochs")
parser.add_argument("--wandb", action="store_true",
help="Use Weights & Biases logging")
parser.add_argument("--distributed", action="store_true",
help="Enable distributed training")
args = parser.parse_args()
# Convert args to config dict
config = vars(args)
# Initialize trainer
trainer = PaveCLIPTrainer(config)
# Start training
trainer.train()
# Cleanup distributed training
if config.get("distributed", False):
dist.destroy_process_group()
if __name__ == "__main__":
main()
# python paveclip_training.py \
# --vision_model vit-b/16 \
# --text_model distilbert-base-uncased \
# --vision_pretrained \
# --text_pretrained \
# --data_dir ./Pavement_Pretraining_Data \
# --batch_size 64 \
# --epochs 100 \
# --wandb
# torchrun --nproc_per_node=4 paveclip_training.py \
# --distributed \
# [other args]