Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
import spaces | |
import os | |
import numpy as np | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
from omegaconf import OmegaConf | |
from image_datasets.dataset import image_resize | |
def tensor_to_pil_image(in_image): | |
tensor = in_image.squeeze(0) | |
tensor = (tensor + 1) / 2 | |
tensor = tensor * 255 | |
numpy_array = tensor.permute(1, 2, 0).byte().numpy() | |
pil_image = Image.fromarray(numpy_array) | |
return pil_image | |
# from src.flux.xflux_pipeline import XFluxSampler | |
args = OmegaConf.load("inference_configs/inference.yaml") | |
# is_schnell = args.model_name == "flux-schnell" | |
# sampler = None | |
device = torch.device("cuda") | |
# dtype = torch.bfloat16 | |
# dit = load_flow_model2(args.model_name, device="cpu").to(device, dtype=dtype) | |
# vae = load_ae(args.model_name, device="cpu").to(device, dtype=dtype) | |
# t5 = load_t5(device="cpu", max_length=256 if is_schnell else 512).to(device, dtype=dtype) | |
# clip = load_clip("cpu").to(device, dtype=dtype) | |
#test push | |
def generate(image: Image.Image, edit_prompt: str): | |
from src.flux.xflux_pipeline import XFluxSampler | |
# vae.requires_grad_(False) | |
# t5.requires_grad_(False) | |
# clip.requires_grad_(False) | |
# model_path = hf_hub_download( | |
# repo_id="Boese0601/ByteMorpher", | |
# filename="dit.safetensors", | |
# use_auth_token=os.getenv("HF_TOKEN") | |
# ) | |
# state_dict = load_file(model_path) | |
# dit.load_state_dict(state_dict) | |
# dit.eval() | |
# dit.to(device, dtype=dtype) | |
sampler = XFluxSampler( | |
ip_loaded=False, | |
spatial_condition=False, | |
clip_image_processor=None, | |
image_encoder=None, | |
improj=None | |
) | |
# global sampler | |
# device = torch.device("cuda") | |
# dtype = torch.bfloat16 | |
# if sampler is None: | |
# dit = load_flow_model2(args.model_name, device="cpu").to(device, dtype=dtype) | |
# vae = load_ae(args.model_name, device="cpu").to(device, dtype=dtype) | |
# t5 = load_t5(device="cpu", max_length=256 if is_schnell else 512).to(device, dtype=dtype) | |
# clip = load_clip("cpu").to(device, dtype=dtype) | |
# vae.requires_grad_(False) | |
# t5.requires_grad_(False) | |
# clip.requires_grad_(False) | |
# model_path = hf_hub_download( | |
# repo_id="Boese0601/ByteMorpher", | |
# filename="dit.safetensors", | |
# use_auth_token=os.getenv("HF_TOKEN") | |
# ) | |
# state_dict = load_file(model_path) | |
# dit.load_state_dict(state_dict) | |
# dit.eval() | |
# sampler = XFluxSampler( | |
# clip=clip, | |
# t5=t5, | |
# ae=vae, | |
# model=dit, | |
# device=device, | |
# ip_loaded=False, | |
# spatial_condition=False, | |
# clip_image_processor=None, | |
# image_encoder=None, | |
# improj=None | |
# ) | |
img = image_resize(image, 512) | |
w, h = img.size | |
img = img.resize(((w // 32) * 32, (h // 32) * 32)) | |
img = torch.from_numpy((np.array(img) / 127.5) - 1) | |
img = img.permute(2, 0, 1).unsqueeze(0).to(device, dtype=dtype) | |
result = sampler( | |
device='cuda', | |
prompt=edit_prompt, | |
width=args.sample_width, | |
height=args.sample_height, | |
num_steps=args.sample_steps, | |
image_prompt=None, | |
true_gs=args.cfg_scale, | |
seed=args.seed, | |
ip_scale=args.ip_scale if args.use_ip else 1.0, | |
source_image=img if args.use_spatial_condition else None, | |
) | |
return tensor_to_pil_image(result) | |
def get_samples(): | |
sample_list = [ | |
{ | |
"image": "assets/0_camera_zoom/20486354.png", | |
"edit_prompt": "Zoom in on the coral and add a small blue fish in the background.", | |
}, | |
] | |
return [ | |
[ | |
Image.open(sample["image"]).resize((512, 512)), | |
sample["edit_prompt"], | |
] | |
for sample in sample_list | |
] | |
header = """ | |
# ByteMorph | |
<div style="text-align: center; display: flex; justify-content: left; gap: 5px;"> | |
<a href=""><img src="https://img.shields.io/badge/ariXv-Paper-A42C25.svg" alt="arXiv"></a> | |
<a href="https://huggingface.co/datasets/Boese0601/ByteMorph-Bench"><img src="https://img.shields.io/badge/🤗-Model-ffbd45.svg" alt="HuggingFace"></a> | |
<a href="https://github.com/Boese0601/ByteMorph"><img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub"></a> | |
</div> | |
""" | |
def create_app(): | |
with gr.Blocks() as app: | |
gr.Markdown(header, elem_id="header") | |
with gr.Row(equal_height=False): | |
with gr.Column(variant="panel", elem_classes="inputPanel"): | |
original_image = gr.Image( | |
type="pil", label="Condition Image", width=300, elem_id="input" | |
) | |
edit_prompt = gr.Textbox(lines=2, label="Edit Prompt", elem_id="edit_prompt") | |
submit_btn = gr.Button("Run", elem_id="submit_btn") | |
with gr.Column(variant="panel", elem_classes="outputPanel"): | |
output_image = gr.Image(type="pil", elem_id="output") | |
with gr.Row(): | |
examples = gr.Examples( | |
examples=get_samples(), | |
inputs=[original_image, edit_prompt], | |
label="Examples", | |
) | |
submit_btn.click( | |
fn=generate, | |
inputs=[original_image, edit_prompt], | |
outputs=output_image, | |
) | |
gr.HTML( | |
""" | |
<div style="text-align: center;"> | |
* This demo's template was modified from <a href="https://arxiv.org/abs/2411.15098" target="_blank">OminiControl</a>. | |
</div> | |
""" | |
) | |
return app | |
if __name__ == "__main__": | |
create_app().launch(debug=False, share=False, ssr_mode=False) | |