Spaces:
Running
on
Zero
Running
on
Zero
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates | |
# // | |
# // Licensed under the Apache License, Version 2.0 (the "License"); | |
# // you may not use this file except in compliance with the License. | |
# // You may obtain a copy of the License at | |
# // | |
# // http://www.apache.org/licenses/LICENSE-2.0 | |
# // | |
# // Unless required by applicable law or agreed to in writing, software | |
# // distributed under the License is distributed on an "AS IS" BASIS, | |
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# // See the License for the specific language governing permissions and | |
# // limitations under the License. | |
from typing import Optional, Tuple, Union | |
import torch | |
from einops import rearrange | |
from torch import nn | |
from torch.nn import functional as F | |
from torch.nn.modules.utils import _triple | |
from common.cache import Cache | |
from common.distributed.ops import gather_heads_scatter_seq, gather_seq_scatter_heads_qkv | |
from ... import na | |
from ...attention import FlashAttentionVarlen | |
from ...mm import MMArg, MMModule | |
from ...normalization import norm_layer_type | |
from ...rope import get_na_rope | |
from ...window import get_window_op | |
from itertools import chain | |
class NaMMAttention(nn.Module): | |
def __init__( | |
self, | |
vid_dim: int, | |
txt_dim: int, | |
heads: int, | |
head_dim: int, | |
qk_bias: bool, | |
qk_norm: norm_layer_type, | |
qk_norm_eps: float, | |
rope_type: Optional[str], | |
rope_dim: int, | |
shared_weights: bool, | |
**kwargs, | |
): | |
super().__init__() | |
dim = MMArg(vid_dim, txt_dim) | |
inner_dim = heads * head_dim | |
qkv_dim = inner_dim * 3 | |
self.head_dim = head_dim | |
self.proj_qkv = MMModule( | |
nn.Linear, dim, qkv_dim, bias=qk_bias, shared_weights=shared_weights | |
) | |
self.proj_out = MMModule(nn.Linear, inner_dim, dim, shared_weights=shared_weights) | |
self.norm_q = MMModule( | |
qk_norm, | |
dim=head_dim, | |
eps=qk_norm_eps, | |
elementwise_affine=True, | |
shared_weights=shared_weights, | |
) | |
self.norm_k = MMModule( | |
qk_norm, | |
dim=head_dim, | |
eps=qk_norm_eps, | |
elementwise_affine=True, | |
shared_weights=shared_weights, | |
) | |
self.rope = get_na_rope(rope_type=rope_type, dim=rope_dim) | |
self.attn = FlashAttentionVarlen() | |
def forward( | |
self, | |
vid: torch.FloatTensor, # l c | |
txt: torch.FloatTensor, # l c | |
vid_shape: torch.LongTensor, # b 3 | |
txt_shape: torch.LongTensor, # b 1 | |
cache: Cache, | |
) -> Tuple[ | |
torch.FloatTensor, | |
torch.FloatTensor, | |
]: | |
vid_qkv, txt_qkv = self.proj_qkv(vid, txt) | |
vid_qkv = gather_seq_scatter_heads_qkv( | |
vid_qkv, | |
seq_dim=0, | |
qkv_shape=vid_shape, | |
cache=cache.namespace("vid"), | |
) | |
txt_qkv = gather_seq_scatter_heads_qkv( | |
txt_qkv, | |
seq_dim=0, | |
qkv_shape=txt_shape, | |
cache=cache.namespace("txt"), | |
) | |
vid_qkv = rearrange(vid_qkv, "l (o h d) -> l o h d", o=3, d=self.head_dim) | |
txt_qkv = rearrange(txt_qkv, "l (o h d) -> l o h d", o=3, d=self.head_dim) | |
vid_q, vid_k, vid_v = vid_qkv.unbind(1) | |
txt_q, txt_k, txt_v = txt_qkv.unbind(1) | |
vid_q, txt_q = self.norm_q(vid_q, txt_q) | |
vid_k, txt_k = self.norm_k(vid_k, txt_k) | |
if self.rope: | |
if self.rope.mm: | |
vid_q, vid_k, txt_q, txt_k = self.rope( | |
vid_q, vid_k, vid_shape, txt_q, txt_k, txt_shape, cache | |
) | |
else: | |
vid_q, vid_k = self.rope(vid_q, vid_k, vid_shape, cache) | |
vid_len = cache("vid_len", lambda: vid_shape.prod(-1)) | |
txt_len = cache("txt_len", lambda: txt_shape.prod(-1)) | |
all_len = cache("all_len", lambda: vid_len + txt_len) | |
concat, unconcat = cache("mm_pnp", lambda: na.concat_idx(vid_len, txt_len)) | |
attn = self.attn( | |
q=concat(vid_q, txt_q).bfloat16(), | |
k=concat(vid_k, txt_k).bfloat16(), | |
v=concat(vid_v, txt_v).bfloat16(), | |
cu_seqlens_q=cache("mm_seqlens", lambda: F.pad(all_len.cumsum(0), (1, 0)).int()), | |
cu_seqlens_k=cache("mm_seqlens", lambda: F.pad(all_len.cumsum(0), (1, 0)).int()), | |
max_seqlen_q=cache("mm_maxlen", lambda: all_len.max().item()), | |
max_seqlen_k=cache("mm_maxlen", lambda: all_len.max().item()), | |
).type_as(vid_q) | |
attn = rearrange(attn, "l h d -> l (h d)") | |
vid_out, txt_out = unconcat(attn) | |
vid_out = gather_heads_scatter_seq(vid_out, head_dim=1, seq_dim=0) | |
txt_out = gather_heads_scatter_seq(txt_out, head_dim=1, seq_dim=0) | |
vid_out, txt_out = self.proj_out(vid_out, txt_out) | |
return vid_out, txt_out | |
class NaSwinAttention(NaMMAttention): | |
def __init__( | |
self, | |
*args, | |
window: Union[int, Tuple[int, int, int]], | |
window_method: str, | |
**kwargs, | |
): | |
super().__init__(*args, **kwargs) | |
self.window = _triple(window) | |
self.window_method = window_method | |
assert all(map(lambda v: isinstance(v, int) and v >= 0, self.window)) | |
self.window_op = get_window_op(window_method) | |
def forward( | |
self, | |
vid: torch.FloatTensor, # l c | |
txt: torch.FloatTensor, # l c | |
vid_shape: torch.LongTensor, # b 3 | |
txt_shape: torch.LongTensor, # b 1 | |
cache: Cache, | |
) -> Tuple[ | |
torch.FloatTensor, | |
torch.FloatTensor, | |
]: | |
vid_qkv, txt_qkv = self.proj_qkv(vid, txt) | |
vid_qkv = gather_seq_scatter_heads_qkv( | |
vid_qkv, | |
seq_dim=0, | |
qkv_shape=vid_shape, | |
cache=cache.namespace("vid"), | |
) | |
txt_qkv = gather_seq_scatter_heads_qkv( | |
txt_qkv, | |
seq_dim=0, | |
qkv_shape=txt_shape, | |
cache=cache.namespace("txt"), | |
) | |
# re-org the input seq for window attn | |
cache_win = cache.namespace(f"{self.window_method}_{self.window}_sd3") | |
def make_window(x: torch.Tensor): | |
t, h, w, _ = x.shape | |
window_slices = self.window_op((t, h, w), self.window) | |
return [x[st, sh, sw] for (st, sh, sw) in window_slices] | |
window_partition, window_reverse, window_shape, window_count = cache_win( | |
"win_transform", | |
lambda: na.window_idx(vid_shape, make_window), | |
) | |
vid_qkv_win = window_partition(vid_qkv) | |
vid_qkv_win = rearrange(vid_qkv_win, "l (o h d) -> l o h d", o=3, d=self.head_dim) | |
txt_qkv = rearrange(txt_qkv, "l (o h d) -> l o h d", o=3, d=self.head_dim) | |
vid_q, vid_k, vid_v = vid_qkv_win.unbind(1) | |
txt_q, txt_k, txt_v = txt_qkv.unbind(1) | |
vid_q, txt_q = self.norm_q(vid_q, txt_q) | |
vid_k, txt_k = self.norm_k(vid_k, txt_k) | |
txt_len = cache("txt_len", lambda: txt_shape.prod(-1)) | |
vid_len_win = cache_win("vid_len", lambda: window_shape.prod(-1)) | |
txt_len_win = cache_win("txt_len", lambda: txt_len.repeat_interleave(window_count)) | |
all_len_win = cache_win("all_len", lambda: vid_len_win + txt_len_win) | |
concat_win, unconcat_win = cache_win( | |
"mm_pnp", lambda: na.repeat_concat_idx(vid_len_win, txt_len, window_count) | |
) | |
# window rope | |
if self.rope: | |
if self.rope.mm: | |
# repeat text q and k for window mmrope | |
_, num_h, _ = txt_q.shape | |
txt_q_repeat = rearrange(txt_q, "l h d -> l (h d)") | |
txt_q_repeat = na.unflatten(txt_q_repeat, txt_shape) | |
txt_q_repeat = [[x] * n for x, n in zip(txt_q_repeat, window_count)] | |
txt_q_repeat = list(chain(*txt_q_repeat)) | |
txt_q_repeat, txt_shape_repeat = na.flatten(txt_q_repeat) | |
txt_q_repeat = rearrange(txt_q_repeat, "l (h d) -> l h d", h=num_h) | |
txt_k_repeat = rearrange(txt_k, "l h d -> l (h d)") | |
txt_k_repeat = na.unflatten(txt_k_repeat, txt_shape) | |
txt_k_repeat = [[x] * n for x, n in zip(txt_k_repeat, window_count)] | |
txt_k_repeat = list(chain(*txt_k_repeat)) | |
txt_k_repeat, _ = na.flatten(txt_k_repeat) | |
txt_k_repeat = rearrange(txt_k_repeat, "l (h d) -> l h d", h=num_h) | |
vid_q, vid_k, txt_q, txt_k = self.rope( | |
vid_q, vid_k, window_shape, txt_q_repeat, txt_k_repeat, txt_shape_repeat, cache_win | |
) | |
else: | |
vid_q, vid_k = self.rope(vid_q, vid_k, window_shape, cache_win) | |
out = self.attn( | |
q=concat_win(vid_q, txt_q).bfloat16(), | |
k=concat_win(vid_k, txt_k).bfloat16(), | |
v=concat_win(vid_v, txt_v).bfloat16(), | |
cu_seqlens_q=cache_win( | |
"vid_seqlens_q", lambda: F.pad(all_len_win.cumsum(0), (1, 0)).int() | |
), | |
cu_seqlens_k=cache_win( | |
"vid_seqlens_k", lambda: F.pad(all_len_win.cumsum(0), (1, 0)).int() | |
), | |
max_seqlen_q=cache_win("vid_max_seqlen_q", lambda: all_len_win.max().item()), | |
max_seqlen_k=cache_win("vid_max_seqlen_k", lambda: all_len_win.max().item()), | |
).type_as(vid_q) | |
# text pooling | |
vid_out, txt_out = unconcat_win(out) | |
vid_out = rearrange(vid_out, "l h d -> l (h d)") | |
txt_out = rearrange(txt_out, "l h d -> l (h d)") | |
vid_out = window_reverse(vid_out) | |
vid_out = gather_heads_scatter_seq(vid_out, head_dim=1, seq_dim=0) | |
txt_out = gather_heads_scatter_seq(txt_out, head_dim=1, seq_dim=0) | |
vid_out, txt_out = self.proj_out(vid_out, txt_out) | |
return vid_out, txt_out |