Tar-7B / tok /models.py
hanjiaming.0208
init
146dae5
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# //
# // Licensed under the Apache License, Version 2.0 (the "License");
# // you may not use this file except in compliance with the License.
# // You may obtain a copy of the License at
# //
# // http://www.apache.org/licenses/LICENSE-2.0
# //
# // Unless required by applicable law or agreed to in writing, software
# // distributed under the License is distributed on an "AS IS" BASIS,
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# // See the License for the specific language governing permissions and
# // limitations under the License.
import copy
import inspect
import torch
models = {}
def register(name):
def decorator(cls):
models[name] = cls
return cls
return decorator
def make(model_spec, args=None, load_sd=False) -> torch.nn.Module:
if args is not None:
model_args = copy.deepcopy(model_spec['args'])
model_args.update(args)
else:
model_args = model_spec['args']
model_params = inspect.signature(models[model_spec['name']]).parameters
if 'kwargs' not in model_params:
model_args = {k: v for k, v in model_args.items() if k in model_params}
model = models[model_spec['name']](**model_args)
if load_sd:
if ('abs_pe' in model_spec['sd']) and hasattr(model, 'abs_pe') and model_spec['sd']['abs_pe'].shape != model.abs_pe.shape:
del model_spec['sd']['abs_pe']
msg = model.load_state_dict(model_spec['sd'], strict=False)
print(msg)
return model