File size: 81,113 Bytes
21df8ee
 
 
9faf081
ffa837b
ccd76a9
 
 
1105522
 
 
 
 
ccd76a9
1105522
d248e5f
 
ffa837b
d248e5f
 
1105522
 
d248e5f
1105522
 
 
 
 
 
ffa837b
1105522
 
ffa837b
1105522
 
d248e5f
78bc459
d248e5f
 
78bc459
1105522
 
 
78bc459
a3b612a
 
78bc459
 
 
 
 
 
 
9faf081
1105522
d248e5f
78bc459
9faf081
 
78bc459
 
 
 
 
1105522
 
c3b2589
78bc459
 
8d47a43
1105522
78bc459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105522
 
78bc459
 
 
d248e5f
 
 
 
78bc459
d248e5f
78bc459
 
 
 
 
 
 
 
 
 
 
d248e5f
 
c3b2589
78bc459
 
c3b2589
78bc459
 
c3b2589
78bc459
 
9faf081
78bc459
a3b612a
9faf081
78bc459
9faf081
 
a3b612a
9faf081
 
78bc459
 
 
9faf081
78bc459
9faf081
78bc459
9faf081
78bc459
 
 
 
 
9faf081
 
78bc459
 
9faf081
78bc459
a3b612a
9faf081
78bc459
9faf081
 
a3b612a
9faf081
 
78bc459
 
9faf081
78bc459
9faf081
78bc459
9faf081
 
78bc459
 
 
9faf081
ffa837b
 
78bc459
8d47a43
 
 
9faf081
 
 
8d47a43
78bc459
9faf081
 
78bc459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9faf081
 
 
 
78bc459
9faf081
78bc459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9faf081
 
 
 
 
 
78bc459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9faf081
 
 
 
78bc459
ffa837b
1f60596
78bc459
d248e5f
 
 
 
 
 
 
 
 
 
78bc459
 
 
 
 
 
d248e5f
ffa837b
78bc459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffa837b
a3b612a
9faf081
78bc459
9faf081
 
78bc459
ffa837b
78bc459
9faf081
a3b612a
9faf081
78bc459
 
 
9faf081
78bc459
9faf081
78bc459
ffa837b
9faf081
ffa837b
9faf081
 
78bc459
 
 
 
 
 
9faf081
78bc459
 
9faf081
78bc459
ffa837b
9faf081
ffa837b
9faf081
 
a3b612a
9faf081
78bc459
 
9faf081
ffa837b
 
78bc459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9faf081
78bc459
9faf081
 
 
 
78bc459
9faf081
 
 
 
a3b612a
78bc459
9faf081
 
8d47a43
ffa837b
78bc459
9faf081
 
a3b612a
78bc459
9faf081
ffa837b
9faf081
 
78bc459
d248e5f
 
9faf081
a3b612a
9faf081
 
1f60596
78bc459
ffa837b
78bc459
 
ffa837b
78bc459
 
ffa837b
78bc459
9faf081
78bc459
 
 
9faf081
 
 
 
78bc459
a3b612a
9faf081
a3b612a
9faf081
 
 
 
 
 
 
 
 
 
78bc459
9faf081
 
 
 
78bc459
 
8d47a43
ffa837b
9faf081
78bc459
 
9faf081
ffa837b
9faf081
78bc459
1f60596
14384f4
9faf081
 
 
 
1f60596
ffa837b
78bc459
ffa837b
78bc459
ffa837b
9faf081
78bc459
 
9faf081
 
 
 
78bc459
a3b612a
9faf081
a3b612a
9faf081
 
 
 
 
 
 
 
 
 
78bc459
9faf081
 
 
 
78bc459
 
8d47a43
ffa837b
9faf081
78bc459
 
9faf081
c3b2589
9faf081
78bc459
c3b2589
14384f4
1f60596
78bc459
 
 
 
 
 
 
ffa837b
d248e5f
78bc459
 
 
a3b612a
78bc459
9faf081
78bc459
 
9faf081
78bc459
 
9faf081
78bc459
 
9faf081
78bc459
ffa837b
78bc459
 
 
9faf081
 
 
 
 
 
 
 
ffa837b
1f60596
ffa837b
78bc459
 
 
9faf081
78bc459
9faf081
d248e5f
78bc459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9faf081
 
 
 
d248e5f
1105522
d248e5f
78bc459
 
 
 
ffa837b
d248e5f
 
a3b612a
9faf081
 
 
78bc459
 
ffa837b
78bc459
ffa837b
78bc459
ffa837b
78bc459
 
8d47a43
78bc459
9faf081
 
 
 
 
 
 
 
 
 
 
 
 
d248e5f
 
9faf081
 
 
 
 
 
78bc459
a3b612a
9faf081
 
 
 
 
78bc459
9faf081
 
 
 
 
ffa837b
 
 
 
 
1105522
78bc459
ffa837b
1105522
ffa837b
 
1105522
a3b612a
78bc459
9faf081
78bc459
 
 
 
9faf081
 
78bc459
 
 
 
 
 
 
ffa837b
78bc459
9faf081
78bc459
9faf081
 
 
a3b612a
8d47a43
9faf081
78bc459
 
 
9faf081
78bc459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9faf081
1105522
9faf081
 
 
 
ffa837b
9faf081
ffa837b
9faf081
ffa837b
1105522
78bc459
9faf081
 
a3b612a
 
 
 
 
 
 
 
 
9faf081
 
 
8d47a43
9faf081
 
 
 
 
 
78bc459
 
9faf081
 
 
78bc459
 
 
9faf081
 
 
78bc459
9faf081
 
 
 
78bc459
9faf081
1105522
 
 
ffa837b
9faf081
78bc459
 
 
 
 
 
9faf081
 
 
 
ffa837b
9faf081
a3b612a
8d47a43
a3b612a
9faf081
 
1105522
9faf081
 
1105522
ffa837b
9faf081
78bc459
9faf081
 
 
 
78bc459
a3b612a
d248e5f
9faf081
d248e5f
 
 
c3b2589
14384f4
1105522
78bc459
ffa837b
1105522
ffa837b
 
1105522
a3b612a
78bc459
 
 
9faf081
78bc459
9faf081
ffa837b
78bc459
 
 
 
9faf081
78bc459
ffa837b
a3b612a
9faf081
78bc459
9faf081
 
 
 
ffa837b
78bc459
 
 
9faf081
78bc459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9faf081
a3b612a
9faf081
 
78bc459
9faf081
 
 
 
 
 
 
a3b612a
 
 
 
 
78bc459
a3b612a
9faf081
 
 
 
 
 
 
 
1105522
9faf081
 
a3b612a
 
 
 
 
78bc459
a3b612a
9faf081
 
 
 
 
 
 
 
1105522
a3b612a
78bc459
9faf081
 
a3b612a
 
 
 
 
78bc459
a3b612a
8d47a43
9faf081
 
 
 
 
 
 
 
 
 
78bc459
9faf081
 
a3b612a
9faf081
78bc459
9faf081
 
 
 
 
 
 
 
 
78bc459
 
 
9faf081
 
 
78bc459
9faf081
a3b612a
9faf081
a3b612a
9faf081
 
78bc459
1105522
9faf081
 
 
 
78bc459
9faf081
8d47a43
78bc459
 
 
c3b2589
14384f4
78bc459
9faf081
a3b612a
9faf081
 
a3b612a
78bc459
9faf081
78bc459
 
d248e5f
78bc459
9faf081
78bc459
 
9faf081
ffa837b
 
9faf081
 
 
 
 
 
 
d248e5f
9faf081
78bc459
9faf081
78bc459
d248e5f
78bc459
9faf081
78bc459
9faf081
 
a3b612a
78bc459
 
 
 
 
9faf081
ffa837b
78bc459
 
9faf081
 
 
78bc459
 
d248e5f
78bc459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9faf081
 
 
78bc459
9faf081
 
 
78bc459
 
 
 
9faf081
a3b612a
 
 
 
9faf081
 
 
78bc459
9faf081
 
78bc459
a3b612a
78bc459
9faf081
 
 
8d47a43
78bc459
9faf081
a3b612a
78bc459
 
 
 
 
9faf081
 
 
 
 
78bc459
9faf081
78bc459
 
9faf081
78bc459
9faf081
 
 
 
 
 
78bc459
 
 
9faf081
 
a3b612a
 
 
 
9faf081
 
 
 
78bc459
9faf081
 
78bc459
a3b612a
78bc459
9faf081
 
 
ffa837b
d248e5f
9faf081
78bc459
d248e5f
9faf081
a3b612a
d248e5f
 
a3b612a
9faf081
 
 
 
 
78bc459
 
 
9faf081
 
78bc459
 
 
 
 
 
 
 
 
1105522
9faf081
 
78bc459
d248e5f
9faf081
 
78bc459
9faf081
 
 
 
 
 
 
 
78bc459
9faf081
 
 
 
 
 
 
78bc459
c3b2589
9faf081
78bc459
9faf081
 
 
78bc459
 
 
 
 
 
 
 
 
 
 
 
 
9faf081
 
78bc459
 
9faf081
 
78bc459
8d47a43
9faf081
 
 
 
78bc459
 
 
9faf081
78bc459
9faf081
78bc459
 
 
 
9faf081
 
 
 
 
78bc459
9faf081
 
 
78bc459
 
9faf081
78bc459
 
9faf081
78bc459
 
 
9faf081
78bc459
 
9faf081
78bc459
 
9faf081
78bc459
 
a3b612a
 
 
 
9faf081
 
 
78bc459
 
9faf081
 
78bc459
 
 
 
8d47a43
8681abe
a3b612a
8d47a43
78bc459
9faf081
 
 
 
 
a3b612a
78bc459
 
9faf081
 
 
 
 
 
78bc459
9faf081
 
 
 
 
 
78bc459
9faf081
a3b612a
9faf081
 
 
 
78bc459
 
 
 
 
 
9faf081
78bc459
d248e5f
 
78bc459
 
 
 
 
 
9faf081
 
78bc459
9faf081
 
78bc459
9faf081
78bc459
 
 
9faf081
78bc459
 
 
 
 
 
 
 
9faf081
78bc459
9faf081
 
 
78bc459
9faf081
 
78bc459
 
 
 
 
 
9faf081
 
 
1105522
ccd76a9
9faf081
 
78bc459
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
import os

os.system("pip install --upgrade gradio")

from pydantic import BaseModel, ConfigDict
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.integrate import odeint
from scipy.optimize import curve_fit
from sklearn.metrics import mean_squared_error
import gradio as gr
import io
from PIL import Image
import tempfile

class YourModel(BaseModel):
    class Config:
        arbitrary_types_allowed = True

class BioprocessModel:
    def __init__(self, model_type='logistic', maxfev=50000):
        self.params = {}
        self.r2 = {}
        self.rmse = {}
        self.datax = []
        self.datas = []
        self.datap = []
        self.dataxp = []
        self.datasp = []
        self.datapp = []
        self.datax_std = []
        self.datas_std = []
        self.datap_std = []
        self.biomass_model = None
        self.biomass_diff = None # Store the differential equation function
        self.model_type = model_type
        self.maxfev = maxfev
        self.time = None

    @staticmethod
    def logistic(time, xo, xm, um):
        # xo: initial biomass, xm: max biomass, um: max specific growth rate
        if xm == 0 or (xo / xm == 1 and np.any(um * time > 0)):
            return np.full_like(time, np.nan)
        # Add a small epsilon to prevent division by zero or log of zero in edge cases
        term_exp = np.exp(um * time)
        denominator = (1 - (xo / xm) * (1 - term_exp))
        denominator = np.where(denominator == 0, 1e-9, denominator) # Avoid division by zero
        # Ensure xo/xm is not 1 if (1-exp(um*time)) is also 0 (i.e. um*time = 0)
        # This is usually handled by xo < xm constraint in fitting
        return (xo * term_exp) / denominator

    @staticmethod
    def gompertz(time, xm, um, lag):
        # xm: max biomass, um: max specific growth rate, lag: lag time
        if xm == 0:
            return np.full_like(time, np.nan)
        # Add small epsilon to prevent log(0) if exp_term becomes very large negative
        exp_term = (um * np.e / xm) * (lag - time) + 1
        # Clamp large negative values in exp_term to avoid overflow in np.exp(-np.exp(exp_term))
        exp_term_clipped = np.clip(exp_term, -np.inf, 700) # exp(709) is around max float
        return xm * np.exp(-np.exp(exp_term_clipped))

    @staticmethod
    def moser(time, Xm, um, Ks):
        # Xm: max biomass, um: max specific growth rate, Ks: Monod constant (here acting as time shift)
        # This is a simplified form, not the substrate-dependent Moser.
        return Xm * (1 - np.exp(-um * (time - Ks)))

    @staticmethod
    def baranyi(time, X0, Xm, um, lag):
        # X0: initial biomass, Xm: max biomass, um: max specific growth rate, lag: lag time
        # Ensure parameters are valid to prevent math errors
        if X0 <= 0 or Xm <= X0 or um <= 0: # lag can be 0
            return np.full_like(time, np.nan)

        # Adjustment function A(t)
        # Using h0 = um for simplicity in A(t) calculation
        # A_t = t + (1/um) * np.log(np.exp(-um*t) + np.exp(-um*lag) - np.exp(-um*(t+lag)))
        # Argument of log in A(t):
        log_arg_A = np.exp(-um * t) + np.exp(-um * lag) - np.exp(-um * (t + lag))
        log_arg_A = np.where(log_arg_A <= 1e-9, 1e-9, log_arg_A) # Prevent log(0 or negative)
        A_t = t + (1 / um) * np.log(log_arg_A)
        
        # Main Baranyi equation part
        exp_um_At = np.exp(um * A_t)
        # Clamp large values to prevent overflow if Xm/X0 is large
        exp_um_At_clipped = np.clip(exp_um_At, -np.inf, 700)

        numerator = (Xm / X0) * exp_um_At_clipped
        denominator = (Xm / X0 - 1) + exp_um_At_clipped
        denominator = np.where(denominator == 0, 1e-9, denominator) # Avoid division by zero

        return X0 * (numerator / denominator)


    @staticmethod
    def logistic_diff(X, t, params):
        # params for logistic_diff: [xo, xm, um] (xo is not used in diff eq, but passed for consistency)
        _, xm, um = params
        if xm == 0: return 0
        return um * X * (1 - X / xm)

    @staticmethod
    def gompertz_diff(X, t, params):
        # params for gompertz_diff: [xm, um, lag]
        xm, um, lag = params
        if xm == 0: return 0
        # This is d(Gompertz)/dt
        # Gompertz: xm * exp(-exp( (um*e/xm)*(lag-t)+1 ))
        # Let k = (um*e/xm)
        # Let u = (k*(lag-t)+1)
        # dX/dt = X * (-exp(u)) * k * (-1) = X * k * exp(u)
        k_val = um * np.e / xm
        u_val = k_val * (lag - t) + 1
        u_val_clipped = np.clip(u_val, -np.inf, 700)
        return X * k_val * np.exp(u_val_clipped)


    @staticmethod
    def moser_diff(X, t, params):
        # params for moser_diff: [Xm, um, Ks]
        Xm, um, _ = params # Ks is not directly in this simplified dX/dt
        return um * (Xm - X)
    
    # No differential form for Baranyi in this version due to complexity.

    def substrate(self, time, so, p, q, biomass_params_list):
        if self.biomass_model is None or not biomass_params_list:
            return np.full_like(time, np.nan)
        X_t = self.biomass_model(time, *biomass_params_list)
        if np.any(np.isnan(X_t)):
             return np.full_like(time, np.nan)
        
        integral_X = np.zeros_like(X_t)
        if len(time) > 1:
            dt = np.diff(time, prepend=time[0] - (time[1]-time[0] if len(time)>1 else 1))
            integral_X = np.cumsum(X_t * dt)

        # Determine X0 (initial biomass) from the fitted parameters
        if self.model_type == 'logistic' or self.model_type == 'baranyi':
            X0 = biomass_params_list[0] # xo or X0 is the first parameter
        elif self.model_type == 'gompertz':
            X0 = self.gompertz(0, *biomass_params_list)
        elif self.model_type == 'moser':
            X0 = self.moser(0, *biomass_params_list)
        else:
            X0 = X_t[0] # Fallback
        
        X0 = X0 if not np.isnan(X0) else (biomass_params_list[0] if biomass_params_list else 0)


        return so - p * (X_t - X0) - q * integral_X

    def product(self, time, po, alpha, beta, biomass_params_list):
        if self.biomass_model is None or not biomass_params_list:
            return np.full_like(time, np.nan)
        X_t = self.biomass_model(time, *biomass_params_list)
        if np.any(np.isnan(X_t)):
             return np.full_like(time, np.nan)

        integral_X = np.zeros_like(X_t)
        if len(time) > 1:
            dt = np.diff(time, prepend=time[0] - (time[1]-time[0] if len(time)>1 else 1))
            integral_X = np.cumsum(X_t * dt)

        if self.model_type == 'logistic' or self.model_type == 'baranyi':
            X0 = biomass_params_list[0]
        elif self.model_type == 'gompertz':
            X0 = self.gompertz(0, *biomass_params_list)
        elif self.model_type == 'moser':
            X0 = self.moser(0, *biomass_params_list)
        else:
            X0 = X_t[0]
            
        X0 = X0 if not np.isnan(X0) else (biomass_params_list[0] if biomass_params_list else 0)

        return po + alpha * (X_t - X0) + beta * integral_X

    def process_data(self, df):
        # ... (same as before)
        biomass_cols = [col for col in df.columns if col[1] == 'Biomasa']
        substrate_cols = [col for col in df.columns if col[1] == 'Sustrato']
        product_cols = [col for col in df.columns if col[1] == 'Producto']

        if not any(col[1] == 'Tiempo' for col in df.columns):
            raise ValueError("La columna 'Tiempo' no se encuentra en el DataFrame.")
        time_col = [col for col in df.columns if col[1] == 'Tiempo'][0]
        time = df[time_col].dropna().values # Ensure no NaNs in time

        if len(biomass_cols) > 0:
            data_biomass = [df[col].dropna().values for col in biomass_cols] # dropna for each replicate
            # Ensure all replicates have same length as time after dropna
            min_len = len(time)
            data_biomass_aligned = []
            for rep_data in data_biomass:
                if len(rep_data) == min_len:
                    data_biomass_aligned.append(rep_data)
                # else: print warning or handle misaligned data
            
            if data_biomass_aligned:
                data_biomass_np = np.array(data_biomass_aligned)
                self.datax.append(data_biomass_np)
                self.dataxp.append(np.mean(data_biomass_np, axis=0))
                self.datax_std.append(np.std(data_biomass_np, axis=0, ddof=1))
            else: # If no valid replicates after alignment
                self.datax.append(np.array([]))
                self.dataxp.append(np.array([]))
                self.datax_std.append(np.array([]))

        else: 
            self.datax.append(np.array([]))
            self.dataxp.append(np.array([]))
            self.datax_std.append(np.array([]))


        if len(substrate_cols) > 0:
            data_substrate = [df[col].dropna().values for col in substrate_cols]
            min_len = len(time)
            data_substrate_aligned = []
            for rep_data in data_substrate:
                if len(rep_data) == min_len:
                    data_substrate_aligned.append(rep_data)
            
            if data_substrate_aligned:
                data_substrate_np = np.array(data_substrate_aligned)
                self.datas.append(data_substrate_np)
                self.datasp.append(np.mean(data_substrate_np, axis=0))
                self.datas_std.append(np.std(data_substrate_np, axis=0, ddof=1))
            else:
                self.datas.append(np.array([]))
                self.datasp.append(np.array([]))
                self.datas_std.append(np.array([]))
        else:
            self.datas.append(np.array([]))
            self.datasp.append(np.array([]))
            self.datas_std.append(np.array([]))

        if len(product_cols) > 0:
            data_product = [df[col].dropna().values for col in product_cols]
            min_len = len(time)
            data_product_aligned = []
            for rep_data in data_product:
                if len(rep_data) == min_len:
                    data_product_aligned.append(rep_data)

            if data_product_aligned:
                data_product_np = np.array(data_product_aligned)
                self.datap.append(data_product_np)
                self.datapp.append(np.mean(data_product_np, axis=0))
                self.datap_std.append(np.std(data_product_np, axis=0, ddof=1))
            else:
                self.datap.append(np.array([]))
                self.datapp.append(np.array([]))
                self.datap_std.append(np.array([]))
        else:
            self.datap.append(np.array([]))
            self.datapp.append(np.array([]))
            self.datap_std.append(np.array([]))

        self.time = time


    def fit_model(self):
        if self.model_type == 'logistic':
            self.biomass_model = self.logistic
            self.biomass_diff = self.logistic_diff
        elif self.model_type == 'gompertz':
            self.biomass_model = self.gompertz
            self.biomass_diff = self.gompertz_diff
        elif self.model_type == 'moser':
            self.biomass_model = self.moser
            self.biomass_diff = self.moser_diff
        elif self.model_type == 'baranyi':
            self.biomass_model = self.baranyi
            self.biomass_diff = None # No ODE form for Baranyi in this version
        else:
            raise ValueError(f"Modelo de biomasa desconocido: {self.model_type}")


    def fit_biomass(self, time, biomass):
        # Ensure time and biomass are 1D arrays of the same length and numeric
        time = np.asarray(time, dtype=float)
        biomass = np.asarray(biomass, dtype=float)
        if len(time) != len(biomass):
            print("Error: Tiempo y biomasa deben tener la misma longitud.")
            return None
        if np.any(np.isnan(time)) or np.any(np.isnan(biomass)):
            print("Error: Tiempo o biomasa contienen NaNs.")
            # Attempt to remove NaNs consistently
            valid_indices = ~np.isnan(time) & ~np.isnan(biomass)
            time = time[valid_indices]
            biomass = biomass[valid_indices]
            if len(time) < 3: # Need at least 3 points for 3-param models
                print("No hay suficientes datos válidos después de remover NaNs.")
                return None
        
        try:
            if len(np.unique(biomass)) < 2 :
                print(f"Biomasa constante para {self.model_type}, no se puede ajustar el modelo.")
                self.r2['biomass'] = np.nan; self.rmse['biomass'] = np.nan
                return None

            popt = None # Initialize popt
            if self.model_type == 'logistic':
                xo_guess = biomass[0] if biomass[0] > 1e-6 else 1e-3
                xm_guess = max(biomass) * 1.1 if max(biomass) > xo_guess else xo_guess * 2
                if xm_guess <= xo_guess: xm_guess = xo_guess + 1e-3
                p0 = [xo_guess, xm_guess, 0.1]
                bounds = ([1e-9, biomass[0] if biomass[0]>1e-9 else 1e-9, 1e-9], [max(biomass)*0.99 if max(biomass)>0 else 1, np.inf, np.inf])
                # Ensure xo_guess is within bounds[0][0] and bounds[1][0]
                p0[0] = np.clip(p0[0], bounds[0][0], bounds[1][0])
                popt, _ = curve_fit(self.logistic, time, biomass, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9)
                if popt[1] <= popt[0]: # xm <= xo
                     print(f"Advertencia: En modelo logístico, Xm ({popt[1]:.2f}) no es mayor que Xo ({popt[0]:.2f}). Ajuste puede no ser válido.")
                self.params['biomass'] = {'Xo': popt[0], 'Xm': popt[1], 'um': popt[2]}
                y_pred = self.logistic(time, *popt)

            elif self.model_type == 'gompertz':
                xm_guess = max(biomass) if max(biomass) > 0 else 1.0
                um_guess = 0.1
                # A simple lag estimate: time until biomass reaches, say, 10% of (max-min)
                min_bio = min(biomass)
                lag_thresh = min_bio + 0.1 * (max(biomass) - min_bio)
                lag_indices = np.where(biomass > lag_thresh)[0]
                lag_guess = time[lag_indices[0]] if len(lag_indices) > 0 else time[0]

                p0 = [xm_guess, um_guess, lag_guess]
                bounds = ([min(biomass) if min(biomass)>1e-9 else 1e-9, 1e-9, 0], 
                          [np.inf, np.inf, max(time) if len(time)>0 else 100])
                popt, _ = curve_fit(self.gompertz, time, biomass, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9)
                self.params['biomass'] = {'Xm': popt[0], 'um': popt[1], 'lag': popt[2]}
                y_pred = self.gompertz(time, *popt)

            elif self.model_type == 'moser':
                Xm_guess = max(biomass) if max(biomass) > 0 else 1.0
                um_guess = 0.1
                Ks_guess = time[0]
                p0 = [Xm_guess, um_guess, Ks_guess]
                bounds = ([min(biomass) if min(biomass)>1e-9 else 1e-9, 1e-9, -max(time) if len(time)>0 else -100], # Ks can be negative
                          [np.inf, np.inf, max(time) if len(time)>0 else 100])
                popt, _ = curve_fit(self.moser, time, biomass, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9)
                self.params['biomass'] = {'Xm': popt[0], 'um': popt[1], 'Ks': popt[2]}
                y_pred = self.moser(time, *popt)
            
            elif self.model_type == 'baranyi':
                X0_guess = biomass[0] if biomass[0] > 1e-6 else 1e-3
                Xm_guess = max(biomass) if max(biomass) > X0_guess else X0_guess * 2
                if Xm_guess <= X0_guess: Xm_guess = X0_guess + 1e-3 # Ensure Xm > X0
                um_guess = 0.1
                min_bio = X0_guess
                lag_thresh = min_bio + 0.1 * (Xm_guess - min_bio)
                lag_indices = np.where(biomass > lag_thresh)[0]
                lag_guess = time[lag_indices[0]] if len(lag_indices) > 0 and time[lag_indices[0]] > 0 else (time[0] if time[0] > 1e-9 else 1e-9) # lag must be >0 for some A(t) forms
                if lag_guess <= 0: lag_guess = 1e-9 # Ensure lag is positive for Baranyi A(t) log

                p0 = [X0_guess, Xm_guess, um_guess, lag_guess]
                bounds = (
                    [1e-9, biomass[0] if biomass[0]>1e-9 else 1e-9, 1e-9, 1e-9], # X0, Xm, um, lag > 0
                    [max(biomass)*0.99 if max(biomass)>0 else 1, np.inf, np.inf, max(time) if len(time)>0 else 100]
                )
                p0[0] = np.clip(p0[0], bounds[0][0], bounds[1][0]) # Clip X0_guess
                p0[3] = np.clip(p0[3], bounds[0][3], bounds[1][3]) # Clip lag_guess

                popt, _ = curve_fit(self.baranyi, time, biomass, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9)
                if popt[1] <= popt[0]: # Xm <= X0
                     print(f"Advertencia: En modelo Baranyi, Xm ({popt[1]:.2f}) no es mayor que X0 ({popt[0]:.2f}). Ajuste puede no ser válido.")
                self.params['biomass'] = {'X0': popt[0], 'Xm': popt[1], 'um': popt[2], 'lag': popt[3]}
                y_pred = self.baranyi(time, *popt)

            else:
                print(f"Modelo {self.model_type} no implementado para ajuste de biomasa.")
                return None

            if np.any(np.isnan(y_pred)) or np.any(np.isinf(y_pred)):
                print(f"Predicción de biomasa contiene NaN/Inf para {self.model_type}. Ajuste fallido.")
                self.r2['biomass'] = np.nan; self.rmse['biomass'] = np.nan
                return None

            ss_res = np.sum((biomass - y_pred) ** 2)
            ss_tot = np.sum((biomass - np.mean(biomass)) ** 2)
            if ss_tot == 0:
                self.r2['biomass'] = 1.0 if ss_res < 1e-9 else 0.0 # Perfect fit if residuals are also ~0
            else:
                self.r2['biomass'] = 1 - (ss_res / ss_tot)
            self.rmse['biomass'] = np.sqrt(mean_squared_error(biomass, y_pred))
            return y_pred

        except RuntimeError as e:
            print(f"Error de Runtime en fit_biomass_{self.model_type} (probablemente no se pudo ajustar): {e}")
            self.params['biomass'] = {}
            self.r2['biomass'] = np.nan; self.rmse['biomass'] = np.nan
            return None
        except Exception as e:
            print(f"Error general en fit_biomass_{self.model_type}: {e}")
            self.params['biomass'] = {}
            self.r2['biomass'] = np.nan; self.rmse['biomass'] = np.nan
            return None

    def fit_substrate(self, time, substrate, biomass_params_dict):
        if not biomass_params_dict:
            print(f"Error en fit_substrate_{self.model_type}: Parámetros de biomasa no disponibles.")
            return None
        try:
            # Extract parameters based on model type into a list for self.substrate
            if self.model_type == 'logistic':
                # Expected by self.logistic: xo, xm, um
                biomass_params_values = [biomass_params_dict['Xo'], biomass_params_dict['Xm'], biomass_params_dict['um']]
            elif self.model_type == 'gompertz':
                # Expected by self.gompertz: xm, um, lag
                biomass_params_values = [biomass_params_dict['Xm'], biomass_params_dict['um'], biomass_params_dict['lag']]
            elif self.model_type == 'moser':
                # Expected by self.moser: Xm, um, Ks
                biomass_params_values = [biomass_params_dict['Xm'], biomass_params_dict['um'], biomass_params_dict['Ks']]
            elif self.model_type == 'baranyi':
                # Expected by self.baranyi: X0, Xm, um, lag
                biomass_params_values = [biomass_params_dict['X0'], biomass_params_dict['Xm'], biomass_params_dict['um'], biomass_params_dict['lag']]
            else:
                return None

            so_guess = substrate[0] if len(substrate) > 0 else 1.0
            p_guess = 0.1 
            q_guess = 0.01
            p0 = [so_guess, p_guess, q_guess]
            bounds = ([0, 0, 0], [np.inf, np.inf, np.inf])

            popt, _ = curve_fit(
                lambda t, so, p, q: self.substrate(t, so, p, q, biomass_params_values),
                time, substrate, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9
            )
            self.params['substrate'] = {'so': popt[0], 'p': popt[1], 'q': popt[2]}
            y_pred = self.substrate(time, *popt, biomass_params_values)

            if np.any(np.isnan(y_pred)) or np.any(np.isinf(y_pred)):
                print(f"Predicción de sustrato contiene NaN/Inf para {self.model_type}. Ajuste fallido.")
                self.r2['substrate'] = np.nan; self.rmse['substrate'] = np.nan
                return None

            ss_res = np.sum((substrate - y_pred) ** 2)
            ss_tot = np.sum((substrate - np.mean(substrate)) ** 2)
            if ss_tot == 0: self.r2['substrate'] = 1.0 if ss_res < 1e-9 else 0.0
            else: self.r2['substrate'] = 1 - (ss_res / ss_tot)
            self.rmse['substrate'] = np.sqrt(mean_squared_error(substrate, y_pred))
            return y_pred
        except RuntimeError as e:
            print(f"Error de Runtime en fit_substrate_{self.model_type}: {e}")
            self.params['substrate'] = {}; self.r2['substrate'] = np.nan; self.rmse['substrate'] = np.nan
            return None
        except Exception as e:
            print(f"Error general en fit_substrate_{self.model_type}: {e}")
            self.params['substrate'] = {}; self.r2['substrate'] = np.nan; self.rmse['substrate'] = np.nan
            return None

    def fit_product(self, time, product, biomass_params_dict):
        if not biomass_params_dict:
            print(f"Error en fit_product_{self.model_type}: Parámetros de biomasa no disponibles.")
            return None
        try:
            if self.model_type == 'logistic':
                biomass_params_values = [biomass_params_dict['Xo'], biomass_params_dict['Xm'], biomass_params_dict['um']]
            elif self.model_type == 'gompertz':
                biomass_params_values = [biomass_params_dict['Xm'], biomass_params_dict['um'], biomass_params_dict['lag']]
            elif self.model_type == 'moser':
                biomass_params_values = [biomass_params_dict['Xm'], biomass_params_dict['um'], biomass_params_dict['Ks']]
            elif self.model_type == 'baranyi':
                biomass_params_values = [biomass_params_dict['X0'], biomass_params_dict['Xm'], biomass_params_dict['um'], biomass_params_dict['lag']]
            else:
                return None

            po_guess = product[0] if len(product) > 0 else 0.0
            alpha_guess = 0.1 
            beta_guess = 0.01
            p0 = [po_guess, alpha_guess, beta_guess]
            bounds = ([0, 0, 0], [np.inf, np.inf, np.inf])

            popt, _ = curve_fit(
                lambda t, po, alpha, beta: self.product(t, po, alpha, beta, biomass_params_values),
                time, product, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9
            )
            self.params['product'] = {'po': popt[0], 'alpha': popt[1], 'beta': popt[2]}
            y_pred = self.product(time, *popt, biomass_params_values)

            if np.any(np.isnan(y_pred)) or np.any(np.isinf(y_pred)):
                print(f"Predicción de producto contiene NaN/Inf para {self.model_type}. Ajuste fallido.")
                self.r2['product'] = np.nan; self.rmse['product'] = np.nan
                return None

            ss_res = np.sum((product - y_pred) ** 2)
            ss_tot = np.sum((product - np.mean(product)) ** 2)
            if ss_tot == 0: self.r2['product'] = 1.0 if ss_res < 1e-9 else 0.0
            else: self.r2['product'] = 1 - (ss_res / ss_tot)
            self.rmse['product'] = np.sqrt(mean_squared_error(product, y_pred))
            return y_pred
        except RuntimeError as e:
            print(f"Error de Runtime en fit_product_{self.model_type}: {e}")
            self.params['product'] = {}; self.r2['product'] = np.nan; self.rmse['product'] = np.nan
            return None
        except Exception as e:
            print(f"Error general en fit_product_{self.model_type}: {e}")
            self.params['product'] = {}; self.r2['product'] = np.nan; self.rmse['product'] = np.nan
            return None

    def generate_fine_time_grid(self, time):
        # ... (same as before)
        if time is None or len(time) < 2: # Need at least 2 points to define a range
             return np.array([0]) if (time is None or len(time)==0) else np.array(time)
        time_min, time_max = np.min(time), np.max(time)
        if time_min == time_max: # If all time points are the same
            return np.array([time_min])
        time_fine = np.linspace(time_min, time_max, 500)
        return time_fine


    def system(self, y, t, biomass_params_list, substrate_params_list, product_params_list, model_type_for_ode):
        # model_type_for_ode is passed to ensure we use the correct diff eq
        X, S, P = y
        dXdt = 0.0

        if model_type_for_ode == 'logistic':
            # biomass_params_list for logistic: [Xo, Xm, um]
            dXdt = self.logistic_diff(X, t, biomass_params_list)
        elif model_type_for_ode == 'gompertz':
            # biomass_params_list for gompertz: [Xm, um, lag]
            dXdt = self.gompertz_diff(X, t, biomass_params_list)
        elif model_type_for_ode == 'moser':
            # biomass_params_list for moser: [Xm, um, Ks]
            dXdt = self.moser_diff(X, t, biomass_params_list)
        # No ODE for Baranyi in this version
        else:
            # This case should ideally be prevented before calling system if model has no diff eq
            print(f"Advertencia: Ecuación diferencial no definida para el modelo {model_type_for_ode} en la función 'system'. dXdt=0.")
            dXdt = 0.0 

        p_val = substrate_params_list[1] if len(substrate_params_list) > 1 else 0
        q_val = substrate_params_list[2] if len(substrate_params_list) > 2 else 0
        dSdt = -p_val * dXdt - q_val * X

        alpha_val = product_params_list[1] if len(product_params_list) > 1 else 0
        beta_val = product_params_list[2] if len(product_params_list) > 2 else 0
        dPdt = alpha_val * dXdt + beta_val * X
        return [dXdt, dSdt, dPdt]

    def get_initial_conditions(self, time, biomass, substrate, product):
        X0_exp = biomass[0] if biomass is not None and len(biomass) > 0 else 0
        S0_exp = substrate[0] if substrate is not None and len(substrate) > 0 else 0
        P0_exp = product[0] if product is not None and len(product) > 0 else 0

        X0 = X0_exp
        if 'biomass' in self.params and self.params['biomass']:
            if self.model_type == 'logistic':
                X0 = self.params['biomass'].get('Xo', X0_exp)
            elif self.model_type == 'baranyi': # Baranyi also has X0 as a direct parameter
                X0 = self.params['biomass'].get('X0', X0_exp)
            elif self.model_type == 'gompertz' and self.biomass_model:
                # For Gompertz, X(t=0) needs to be calculated from its parameters
                # Parameters: Xm, um, lag
                params_list = [self.params['biomass'].get('Xm',1), self.params['biomass'].get('um',0.1), self.params['biomass'].get('lag',0)]
                X0_calc = self.biomass_model(0, *params_list)
                X0 = X0_calc if not np.isnan(X0_calc) else X0_exp
            elif self.model_type == 'moser' and self.biomass_model:
                # For Moser, X(t=0) needs to be calculated
                # Parameters: Xm, um, Ks
                params_list = [self.params['biomass'].get('Xm',1), self.params['biomass'].get('um',0.1), self.params['biomass'].get('Ks',0)]
                X0_calc = self.biomass_model(0, *params_list)
                X0 = X0_calc if not np.isnan(X0_calc) else X0_exp
        
        S0 = self.params.get('substrate', {}).get('so', S0_exp)
        P0 = self.params.get('product', {}).get('po', P0_exp)
            
        X0 = X0 if not np.isnan(X0) else 0.0
        S0 = S0 if not np.isnan(S0) else 0.0
        P0 = P0 if not np.isnan(P0) else 0.0
        return [X0, S0, P0]

    def solve_differential_equations(self, time, biomass, substrate, product):
        if self.biomass_diff is None: # Check if a differential equation is defined for this model
            print(f"ODE solving no está soportado para el modelo {self.model_type}. Se usarán resultados de curve_fit.")
            return None, None, None, time # Return None for solutions, original time

        if 'biomass' not in self.params or not self.params['biomass']:
            print("No hay parámetros de biomasa, no se pueden resolver las EDO.")
            return None, None, None, time
        if time is None or len(time) == 0 :
            print("Tiempo no válido para resolver EDOs.")
            return None, None, None, np.array([])

        # Prepare biomass_params_list for ODE system based on self.model_type
        # This list should match what the respective _diff function expects
        if self.model_type == 'logistic':
            biomass_params_list_ode = [self.params['biomass']['Xo'], self.params['biomass']['Xm'], self.params['biomass']['um']]
        elif self.model_type == 'gompertz':
            biomass_params_list_ode = [self.params['biomass']['Xm'], self.params['biomass']['um'], self.params['biomass']['lag']]
        elif self.model_type == 'moser':
            biomass_params_list_ode = [self.params['biomass']['Xm'], self.params['biomass']['um'], self.params['biomass']['Ks']]
        # Baranyi does not have biomass_diff implemented here, so it's caught by self.biomass_diff is None
        else:
            print(f"Tipo de modelo de biomasa desconocido para EDO: {self.model_type}")
            return None, None, None, time

        substrate_params_list = [
            self.params.get('substrate', {}).get('so', 0),
            self.params.get('substrate', {}).get('p', 0),
            self.params.get('substrate', {}).get('q', 0)
        ]
        product_params_list = [
            self.params.get('product', {}).get('po', 0),
            self.params.get('product', {}).get('alpha', 0),
            self.params.get('product', {}).get('beta', 0)
        ]

        initial_conditions = self.get_initial_conditions(time, biomass, substrate, product)
        time_fine = self.generate_fine_time_grid(time)
        if len(time_fine) == 0:
            print("No se pudo generar la malla de tiempo fina.")
            return None, None, None, time

        try:
            sol = odeint(self.system, initial_conditions, time_fine,
                         args=(biomass_params_list_ode, substrate_params_list, product_params_list, self.model_type), # Pass self.model_type for routing in self.system
                         rtol=1e-6, atol=1e-6)
        except Exception as e:
            print(f"Error al resolver EDOs con odeint: {e}")
            try:
                print("Intentando con método 'lsoda'...")
                sol = odeint(self.system, initial_conditions, time_fine,
                             args=(biomass_params_list_ode, substrate_params_list, product_params_list, self.model_type),
                             rtol=1e-6, atol=1e-6, method='lsoda')
            except Exception as e_lsoda:
                print(f"Error al resolver EDOs con odeint (método lsoda): {e_lsoda}")
                return None, None, None, time_fine

        X = sol[:, 0]
        S = sol[:, 1]
        P = sol[:, 2]
        return X, S, P, time_fine

    def plot_results(self, time, biomass, substrate, product,
                     y_pred_biomass_fit, y_pred_substrate_fit, y_pred_product_fit, # Renamed to avoid confusion
                     biomass_std=None, substrate_std=None, product_std=None,
                     experiment_name='', legend_position='best', params_position='upper right',
                     show_legend=True, show_params=True,
                     style='whitegrid',
                     line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o',
                     use_differential=False, axis_labels=None,
                     show_error_bars=True, error_cap_size=3, error_line_width=1):

        # Initialize predictions with curve_fit results
        y_pred_biomass, y_pred_substrate, y_pred_product = y_pred_biomass_fit, y_pred_substrate_fit, y_pred_product_fit

        if y_pred_biomass is None and not (use_differential and self.biomass_diff is not None):
             print(f"No se pudo ajustar biomasa para {experiment_name} con {self.model_type} y no se usan EDO. Omitiendo figura.")
             return None
        
        # Check if ODE should be used and is supported
        can_use_ode = use_differential and self.biomass_diff is not None and 'biomass' in self.params and self.params['biomass']
        if use_differential and self.biomass_diff is None:
            print(f"Modelo {self.model_type} no soporta EDOs. Usando ajuste directo.")
        
        if axis_labels is None: axis_labels = {'x_label': 'Tiempo', 'biomass_label': 'Biomasa', 'substrate_label': 'Sustrato', 'product_label': 'Producto'}
        sns.set_style(style)
        time_to_plot = time 

        if can_use_ode:
            X_ode, S_ode, P_ode, time_fine_ode = self.solve_differential_equations(time, biomass, substrate, product)
            if X_ode is not None:
                y_pred_biomass, y_pred_substrate, y_pred_product = X_ode, S_ode, P_ode
                time_to_plot = time_fine_ode
            else:
                print(f"Fallo al resolver EDOs para {experiment_name}, usando resultados de curve_fit si existen.")
                time_to_plot = self.generate_fine_time_grid(time) # Use fine grid for curve_fit if ODE fails
                # Re-evaluate curve_fit results on fine grid if they exist
                if y_pred_biomass_fit is not None and self.biomass_model and 'biomass' in self.params and self.params['biomass']:
                    biomass_params_values = list(self.params['biomass'].values())
                    y_pred_biomass = self.biomass_model(time_to_plot, *biomass_params_values)
                    if y_pred_substrate_fit is not None and 'substrate' in self.params and self.params['substrate']:
                         substrate_params_values = list(self.params['substrate'].values())
                         y_pred_substrate = self.substrate(time_to_plot, *substrate_params_values, biomass_params_values)
                    if y_pred_product_fit is not None and 'product' in self.params and self.params['product']:
                         product_params_values = list(self.params['product'].values())
                         y_pred_product = self.product(time_to_plot, *product_params_values, biomass_params_values)

        else: # Not using ODE or ODE not supported, use curve_fit results on a fine grid
            time_to_plot = self.generate_fine_time_grid(time)
            if y_pred_biomass_fit is not None and self.biomass_model and 'biomass' in self.params and self.params['biomass']:
                biomass_params_values = list(self.params['biomass'].values()) # Get latest params
                y_pred_biomass = self.biomass_model(time_to_plot, *biomass_params_values)
                if y_pred_substrate_fit is not None and 'substrate' in self.params and self.params['substrate']:
                     substrate_params_values = list(self.params['substrate'].values())
                     y_pred_substrate = self.substrate(time_to_plot, *substrate_params_values, biomass_params_values)
                else: # If substrate fit failed or no data, plot NaNs
                     y_pred_substrate = np.full_like(time_to_plot, np.nan)
                if y_pred_product_fit is not None and 'product' in self.params and self.params['product']:
                     product_params_values = list(self.params['product'].values())
                     y_pred_product = self.product(time_to_plot, *product_params_values, biomass_params_values)
                else: # If product fit failed or no data, plot NaNs
                     y_pred_product = np.full_like(time_to_plot, np.nan)
            else: # Biomass fit failed
                y_pred_biomass = np.full_like(time_to_plot, np.nan)
                y_pred_substrate = np.full_like(time_to_plot, np.nan)
                y_pred_product = np.full_like(time_to_plot, np.nan)


        fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(10, 15))
        fig.suptitle(f'{experiment_name} ({self.model_type.capitalize()})', fontsize=16)

        plots_config = [
            (ax1, biomass, y_pred_biomass, biomass_std, axis_labels['biomass_label'], 'Modelo', self.params.get('biomass', {}),
             self.r2.get('biomass', np.nan), self.rmse.get('biomass', np.nan)),
            (ax2, substrate, y_pred_substrate, substrate_std, axis_labels['substrate_label'], 'Modelo', self.params.get('substrate', {}),
             self.r2.get('substrate', np.nan), self.rmse.get('substrate', np.nan)),
            (ax3, product, y_pred_product, product_std, axis_labels['product_label'], 'Modelo', self.params.get('product', {}),
             self.r2.get('product', np.nan), self.rmse.get('product', np.nan))
        ]
        # ... (rest of plot_results is the same as your provided code, using the new y_pred variables)
        for idx, (ax, data_exp, y_pred_model, data_std_exp, ylabel, model_name_legend, params_dict, r2_val, rmse_val) in enumerate(plots_config):
            if data_exp is not None and len(data_exp) > 0 and not np.all(np.isnan(data_exp)):
                if show_error_bars and data_std_exp is not None and len(data_std_exp) == len(data_exp) and not np.all(np.isnan(data_std_exp)):
                    ax.errorbar(
                        time, data_exp, yerr=data_std_exp, 
                        fmt=marker_style, color=point_color,
                        label='Datos experimentales', 
                        capsize=error_cap_size,
                        elinewidth=error_line_width,
                        markeredgewidth=1
                    )
                else:
                    ax.plot(time, data_exp, marker=marker_style, linestyle='', color=point_color,
                            label='Datos experimentales')
            else:
                ax.text(0.5, 0.5, 'No hay datos experimentales para mostrar.',
                        horizontalalignment='center', verticalalignment='center',
                        transform=ax.transAxes, fontsize=10, color='gray')

            if y_pred_model is not None and len(y_pred_model) > 0 and not np.all(np.isnan(y_pred_model)):
                ax.plot(time_to_plot, y_pred_model, linestyle=line_style, color=line_color, label=model_name_legend)
            # ... (rest of messages for failed fits)
            elif idx == 0 and (y_pred_biomass_fit is None and not can_use_ode): # If biomass fit failed and ODE not possible
                 ax.text(0.5, 0.6, 'Modelo de biomasa no ajustado.',
                        horizontalalignment='center', verticalalignment='center',
                        transform=ax.transAxes, fontsize=10, color='red')
            elif (idx == 1 and y_pred_substrate_fit is None and not can_use_ode) or \
                 (idx == 2 and y_pred_product_fit is None and not can_use_ode) :
                if not ('biomass' in self.params and self.params['biomass']): # If biomass params are missing
                     ax.text(0.5, 0.4, 'Modelo no ajustado (depende de biomasa).',
                        horizontalalignment='center', verticalalignment='center',
                        transform=ax.transAxes, fontsize=10, color='orange')
                elif y_pred_model is None or np.all(np.isnan(y_pred_model)): # If this specific model (S or P) failed
                     ax.text(0.5, 0.4, 'Modelo no ajustado.',
                        horizontalalignment='center', verticalalignment='center',
                        transform=ax.transAxes, fontsize=10, color='orange')


            ax.set_xlabel(axis_labels['x_label'])
            ax.set_ylabel(ylabel)
            if show_legend:
                ax.legend(loc=legend_position)
            ax.set_title(f'{ylabel}')

            if show_params and params_dict and any(np.isfinite(v) for v in params_dict.values()): # Show if any param is finite
                param_text_list = []
                for k, v_param in params_dict.items():
                    param_text_list.append(f"{k} = {v_param:.3g}" if np.isfinite(v_param) else f"{k} = N/A")
                param_text = '\n'.join(param_text_list)
                
                r2_display = f"{r2_val:.3f}" if np.isfinite(r2_val) else "N/A"
                rmse_display = f"{rmse_val:.3f}" if np.isfinite(rmse_val) else "N/A"
                text = f"{param_text}\nR² = {r2_display}\nRMSE = {rmse_display}"

                if params_position == 'outside right':
                    bbox_props = dict(boxstyle='round,pad=0.3', facecolor='wheat', alpha=0.5)
                    fig.subplots_adjust(right=0.75)
                    ax.annotate(text, xy=(1.05, 0.5), xycoords='axes fraction',
                                xytext=(10,0), textcoords='offset points',
                                verticalalignment='center', horizontalalignment='left',
                                bbox=bbox_props)
                else:
                    text_x, ha = (0.95, 'right') if 'right' in params_position else (0.05, 'left')
                    text_y, va = (0.95, 'top') if 'upper' in params_position else (0.05, 'bottom')
                    ax.text(text_x, text_y, text, transform=ax.transAxes,
                            verticalalignment=va, horizontalalignment=ha,
                            bbox={'boxstyle': 'round,pad=0.3', 'facecolor':'wheat', 'alpha':0.5})
            elif show_params : # No params or all NaN
                 ax.text(0.5, 0.3, 'Parámetros no disponibles.',
                        horizontalalignment='center', verticalalignment='center',
                        transform=ax.transAxes, fontsize=9, color='grey')


        plt.tight_layout(rect=[0, 0.03, 1, 0.95])
        buf = io.BytesIO()
        fig.savefig(buf, format='png', bbox_inches='tight')
        buf.seek(0)
        image = Image.open(buf).convert("RGB")
        plt.close(fig)
        return image

    def plot_combined_results(self, time, biomass, substrate, product,
                              y_pred_biomass_fit, y_pred_substrate_fit, y_pred_product_fit, # Renamed
                              biomass_std=None, substrate_std=None, product_std=None,
                              experiment_name='', legend_position='best', params_position='upper right',
                              show_legend=True, show_params=True,
                              style='whitegrid',
                              line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o',
                              use_differential=False, axis_labels=None,
                              show_error_bars=True, error_cap_size=3, error_line_width=1):
        
        y_pred_biomass, y_pred_substrate, y_pred_product = y_pred_biomass_fit, y_pred_substrate_fit, y_pred_product_fit

        if y_pred_biomass is None and not (use_differential and self.biomass_diff is not None):
            print(f"No se pudo ajustar biomasa para {experiment_name} con {self.model_type} (combinado). Omitiendo figura.")
            return None
        
        can_use_ode = use_differential and self.biomass_diff is not None and 'biomass' in self.params and self.params['biomass']
        if use_differential and self.biomass_diff is None:
            print(f"Modelo {self.model_type} no soporta EDOs (combinado). Usando ajuste directo.")

        if axis_labels is None: axis_labels = {'x_label': 'Tiempo', 'biomass_label': 'Biomasa', 'substrate_label': 'Sustrato', 'product_label': 'Producto'}
        sns.set_style(style)
        time_to_plot = time

        if can_use_ode:
            X_ode, S_ode, P_ode, time_fine_ode = self.solve_differential_equations(time, biomass, substrate, product)
            if X_ode is not None:
                y_pred_biomass, y_pred_substrate, y_pred_product = X_ode, S_ode, P_ode
                time_to_plot = time_fine_ode
            else:
                print(f"Fallo al resolver EDOs para {experiment_name} (combinado), usando resultados de curve_fit.")
                time_to_plot = self.generate_fine_time_grid(time)
                if y_pred_biomass_fit is not None and self.biomass_model and 'biomass' in self.params and self.params['biomass']:
                    biomass_params_values = list(self.params['biomass'].values())
                    y_pred_biomass = self.biomass_model(time_to_plot, *biomass_params_values)
                    if y_pred_substrate_fit is not None and 'substrate' in self.params and self.params['substrate']:
                         substrate_params_values = list(self.params['substrate'].values())
                         y_pred_substrate = self.substrate(time_to_plot, *substrate_params_values, biomass_params_values)
                    if y_pred_product_fit is not None and 'product' in self.params and self.params['product']:
                         product_params_values = list(self.params['product'].values())
                         y_pred_product = self.product(time_to_plot, *product_params_values, biomass_params_values)
        else: # Not using ODE or ODE not supported
            time_to_plot = self.generate_fine_time_grid(time)
            if y_pred_biomass_fit is not None and self.biomass_model and 'biomass' in self.params and self.params['biomass']:
                biomass_params_values = list(self.params['biomass'].values())
                y_pred_biomass = self.biomass_model(time_to_plot, *biomass_params_values)
                if y_pred_substrate_fit is not None and 'substrate' in self.params and self.params['substrate']:
                     substrate_params_values = list(self.params['substrate'].values())
                     y_pred_substrate = self.substrate(time_to_plot, *substrate_params_values, biomass_params_values)
                else: y_pred_substrate = np.full_like(time_to_plot, np.nan)
                if y_pred_product_fit is not None and 'product' in self.params and self.params['product']:
                     product_params_values = list(self.params['product'].values())
                     y_pred_product = self.product(time_to_plot, *product_params_values, biomass_params_values)
                else: y_pred_product = np.full_like(time_to_plot, np.nan)
            else:
                y_pred_biomass = np.full_like(time_to_plot, np.nan)
                y_pred_substrate = np.full_like(time_to_plot, np.nan)
                y_pred_product = np.full_like(time_to_plot, np.nan)

        fig, ax1 = plt.subplots(figsize=(12, 7))
        fig.suptitle(f'{experiment_name} ({self.model_type.capitalize()})', fontsize=16)

        # ... (rest of plot_combined_results is the same, using new y_pred variables and error bar params)
        colors = {'Biomasa': 'blue', 'Sustrato': 'green', 'Producto': 'red'}
        data_colors = {'Biomasa': 'darkblue', 'Sustrato': 'darkgreen', 'Producto': 'darkred'}
        model_colors = {'Biomasa': 'cornflowerblue', 'Sustrato': 'limegreen', 'Producto': 'salmon'}

        ax1.set_xlabel(axis_labels['x_label'])
        ax1.set_ylabel(axis_labels['biomass_label'], color=colors['Biomasa'])
        if biomass is not None and len(biomass) > 0 and not np.all(np.isnan(biomass)):
            if show_error_bars and biomass_std is not None and len(biomass_std) == len(biomass) and not np.all(np.isnan(biomass_std)):
                ax1.errorbar(
                    time, biomass, yerr=biomass_std, 
                    fmt=marker_style, color=data_colors['Biomasa'],
                    label=f'{axis_labels["biomass_label"]} (Datos)', 
                    capsize=error_cap_size, elinewidth=error_line_width, markersize=5
                )
            else:
                ax1.plot(time, biomass, marker=marker_style, linestyle='', color=data_colors['Biomasa'],
                         label=f'{axis_labels["biomass_label"]} (Datos)', markersize=5)
        if y_pred_biomass is not None and len(y_pred_biomass) > 0 and not np.all(np.isnan(y_pred_biomass)):
            ax1.plot(time_to_plot, y_pred_biomass, linestyle=line_style, color=model_colors['Biomasa'],
                     label=f'{axis_labels["biomass_label"]} (Modelo)')
        ax1.tick_params(axis='y', labelcolor=colors['Biomasa'])

        ax2 = ax1.twinx()
        ax2.set_ylabel(axis_labels['substrate_label'], color=colors['Sustrato'])
        if substrate is not None and len(substrate) > 0 and not np.all(np.isnan(substrate)):
            if show_error_bars and substrate_std is not None and len(substrate_std) == len(substrate) and not np.all(np.isnan(substrate_std)):
                ax2.errorbar(
                    time, substrate, yerr=substrate_std, 
                    fmt=marker_style, color=data_colors['Sustrato'],
                    label=f'{axis_labels["substrate_label"]} (Datos)', 
                    capsize=error_cap_size, elinewidth=error_line_width, markersize=5
                )
            else:
                ax2.plot(time, substrate, marker=marker_style, linestyle='', color=data_colors['Sustrato'],
                         label=f'{axis_labels["substrate_label"]} (Datos)', markersize=5)
        if y_pred_substrate is not None and len(y_pred_substrate) > 0 and not np.all(np.isnan(y_pred_substrate)):
            ax2.plot(time_to_plot, y_pred_substrate, linestyle=line_style, color=model_colors['Sustrato'],
                     label=f'{axis_labels["substrate_label"]} (Modelo)')
        ax2.tick_params(axis='y', labelcolor=colors['Sustrato'])

        ax3 = ax1.twinx()
        ax3.spines["right"].set_position(("axes", 1.15))
        ax3.set_frame_on(True); ax3.patch.set_visible(False)
        ax3.set_ylabel(axis_labels['product_label'], color=colors['Producto'])
        if product is not None and len(product) > 0 and not np.all(np.isnan(product)):
            if show_error_bars and product_std is not None and len(product_std) == len(product) and not np.all(np.isnan(product_std)):
                ax3.errorbar(
                    time, product, yerr=product_std, 
                    fmt=marker_style, color=data_colors['Producto'],
                    label=f'{axis_labels["product_label"]} (Datos)', 
                    capsize=error_cap_size, elinewidth=error_line_width, markersize=5
                )
            else:
                ax3.plot(time, product, marker=marker_style, linestyle='', color=data_colors['Producto'],
                         label=f'{axis_labels["product_label"]} (Datos)', markersize=5)
        if y_pred_product is not None and len(y_pred_product) > 0 and not np.all(np.isnan(y_pred_product)):
            ax3.plot(time_to_plot, y_pred_product, linestyle=line_style, color=model_colors['Producto'],
                     label=f'{axis_labels["product_label"]} (Modelo)')
        ax3.tick_params(axis='y', labelcolor=colors['Producto'])

        lines_labels_collect = []
        for ax_current in [ax1, ax2, ax3]:
            h, l = ax_current.get_legend_handles_labels()
            if h: lines_labels_collect.append((h,l))
        
        if lines_labels_collect:
            lines, labels = [sum(lol, []) for lol in zip(*[(h,l) for h,l in lines_labels_collect])]
            unique_labels_dict = dict(zip(labels, lines))
            if show_legend: ax1.legend(unique_labels_dict.values(), unique_labels_dict.keys(), loc=legend_position)

        if show_params:
            texts_to_display = []
            param_categories = [
                (axis_labels['biomass_label'], self.params.get('biomass', {}), self.r2.get('biomass', np.nan), self.rmse.get('biomass', np.nan)),
                (axis_labels['substrate_label'], self.params.get('substrate', {}), self.r2.get('substrate', np.nan), self.rmse.get('substrate', np.nan)),
                (axis_labels['product_label'], self.params.get('product', {}), self.r2.get('product', np.nan), self.rmse.get('product', np.nan))
            ]
            for label, params_dict, r2_val, rmse_val in param_categories:
                if params_dict and any(np.isfinite(v) for v in params_dict.values()):
                    param_text_list = [f"  {k} = {v_par:.3g}" if np.isfinite(v_par) else f"  {k} = N/A" for k,v_par in params_dict.items()]
                    param_text = '\n'.join(param_text_list)
                    r2_display = f"{r2_val:.3f}" if np.isfinite(r2_val) else "N/A"
                    rmse_display = f"{rmse_val:.3f}" if np.isfinite(rmse_val) else "N/A"
                    texts_to_display.append(f"{label}:\n{param_text}\n  R² = {r2_display}\n  RMSE = {rmse_display}")
                elif params_dict: texts_to_display.append(f"{label}:\n  Parámetros no válidos o N/A")
            total_text = "\n\n".join(texts_to_display)
            if total_text:
                if params_position == 'outside right':
                    fig.subplots_adjust(right=0.70)
                    fig.text(0.72, 0.5, total_text, transform=fig.transFigure,
                             verticalalignment='center', horizontalalignment='left',
                             bbox=dict(boxstyle='round,pad=0.3', facecolor='wheat', alpha=0.7), fontsize=8)
                else:
                    text_x, ha = (0.95, 'right') if 'right' in params_position else (0.05, 'left')
                    text_y, va = (0.95, 'top') if 'upper' in params_position else (0.05, 'bottom')
                    ax1.text(text_x, text_y, total_text, transform=ax1.transAxes,
                             verticalalignment=va, horizontalalignment=ha,
                             bbox=dict(boxstyle='round,pad=0.3', facecolor='wheat', alpha=0.7), fontsize=8)

        plt.tight_layout(rect=[0, 0.03, 1, 0.95])
        if params_position == 'outside right': fig.subplots_adjust(right=0.70)
        buf = io.BytesIO(); fig.savefig(buf, format='png', bbox_inches='tight'); buf.seek(0)
        image = Image.open(buf).convert("RGB"); plt.close(fig)
        return image


def process_all_data(file, legend_position, params_position, model_types_selected, experiment_names_str,
                     lower_bounds_str, upper_bounds_str,
                     mode, style, line_color, point_color, line_style, marker_style,
                     show_legend, show_params, use_differential, maxfev_val,
                     axis_labels_dict,
                     show_error_bars, error_cap_size, error_line_width):

    # ... (Excel reading and sheet iteration logic remains the same)
    if file is None: return [], pd.DataFrame(), "Por favor, sube un archivo Excel."
    try:
        xls = pd.ExcelFile(file.name if hasattr(file, 'name') else file)
        sheet_names = xls.sheet_names
        if not sheet_names: return [], pd.DataFrame(), "El archivo Excel está vacío."
    except Exception as e: return [], pd.DataFrame(), f"Error al leer el archivo Excel: {e}"

    figures = []
    comparison_data = []
    experiment_names_list = experiment_names_str.strip().split('\n') if experiment_names_str.strip() else []
    all_plot_messages = []

    for sheet_name_idx, sheet_name in enumerate(sheet_names):
        current_experiment_name_base = (experiment_names_list[sheet_name_idx]
                                    if sheet_name_idx < len(experiment_names_list) and experiment_names_list[sheet_name_idx]
                                    else f"Hoja '{sheet_name}'")
        try:
            df = pd.read_excel(xls, sheet_name=sheet_name, header=[0, 1])
            if df.empty: all_plot_messages.append(f"Hoja '{sheet_name}' vacía."); continue
            if not any(col_level2 == 'Tiempo' for _, col_level2 in df.columns):
                all_plot_messages.append(f"Hoja '{sheet_name}' sin 'Tiempo'."); continue
        except Exception as e:
            all_plot_messages.append(f"Error leyendo hoja '{sheet_name}': {e}."); continue

        model_dummy_for_sheet = BioprocessModel() # To process sheet data once
        try:
            model_dummy_for_sheet.process_data(df)
        except ValueError as e:
            all_plot_messages.append(f"Error procesando datos de '{sheet_name}': {e}."); continue
        
        # Ensure dataxp, datasp, datapp are populated for average/combinado modes
        # These should be populated by model_dummy_for_sheet.process_data()
        # If they are empty lists, it means no valid data was found for that component.

        if mode == 'independent':
            # ... (independent mode logic remains largely the same)
            # Ensure time_exp, biomass_exp etc. are correctly extracted and validated
            grouped_cols = df.columns.get_level_values(0).unique()
            for exp_idx, exp_col_name in enumerate(grouped_cols):
                current_experiment_name = f"{current_experiment_name_base} - Exp {exp_idx + 1} ({exp_col_name})"
                exp_df_slice = df[exp_col_name]
                
                try:
                    time_exp = exp_df_slice['Tiempo'].dropna().astype(float).values
                    biomass_exp = exp_df_slice['Biomasa'].dropna().astype(float).values if 'Biomasa' in exp_df_slice else np.array([])
                    substrate_exp = exp_df_slice['Sustrato'].dropna().astype(float).values if 'Sustrato' in exp_df_slice else np.array([])
                    product_exp = exp_df_slice['Producto'].dropna().astype(float).values if 'Producto' in exp_df_slice else np.array([])

                    if len(time_exp) == 0: all_plot_messages.append(f"Sin datos de tiempo para {current_experiment_name}."); continue
                    if len(biomass_exp) == 0: 
                        all_plot_messages.append(f"Sin datos de biomasa para {current_experiment_name}.")
                        for mt in model_types_selected: comparison_data.append({'Experimento': current_experiment_name, 'Modelo': mt.capitalize(), 'R² Biomasa': np.nan, 'RMSE Biomasa': np.nan})
                        continue
                    # Align data if lengths differ due to NaNs (simple truncation to min length)
                    min_len = min(len(time_exp), len(biomass_exp) if len(biomass_exp)>0 else len(time_exp), 
                                  len(substrate_exp) if len(substrate_exp)>0 else len(time_exp), 
                                  len(product_exp) if len(product_exp)>0 else len(time_exp))
                    time_exp = time_exp[:min_len]
                    if len(biomass_exp)>0: biomass_exp = biomass_exp[:min_len]
                    if len(substrate_exp)>0: substrate_exp = substrate_exp[:min_len]
                    if len(product_exp)>0: product_exp = product_exp[:min_len]


                except KeyError as e: all_plot_messages.append(f"Faltan columnas en '{current_experiment_name}': {e}."); continue
                except Exception as e_data: all_plot_messages.append(f"Error extrayendo datos para '{current_experiment_name}': {e_data}."); continue

                biomass_std_exp, substrate_std_exp, product_std_exp = None, None, None # No std for independent mode here

                for model_type_iter in model_types_selected:
                    model_instance = BioprocessModel(model_type=model_type_iter, maxfev=maxfev_val)
                    model_instance.fit_model() # Sets self.biomass_model, self.biomass_diff
                    y_pred_biomass = model_instance.fit_biomass(time_exp, biomass_exp)
                    y_pred_substrate, y_pred_product = None, None
                    if y_pred_biomass is not None and model_instance.params.get('biomass'):
                        if len(substrate_exp) > 0: y_pred_substrate = model_instance.fit_substrate(time_exp, substrate_exp, model_instance.params['biomass'])
                        if len(product_exp) > 0: y_pred_product = model_instance.fit_product(time_exp, product_exp, model_instance.params['biomass'])
                    else: all_plot_messages.append(f"Ajuste biomasa falló: {current_experiment_name}, {model_type_iter}.")
                    
                    comparison_data.append({
                        'Experimento': current_experiment_name, 'Modelo': model_type_iter.capitalize(),
                        'R² Biomasa': model_instance.r2.get('biomass', np.nan), 'RMSE Biomasa': model_instance.rmse.get('biomass', np.nan),
                        'R² Sustrato': model_instance.r2.get('substrate', np.nan), 'RMSE Sustrato': model_instance.rmse.get('substrate', np.nan),
                        'R² Producto': model_instance.r2.get('product', np.nan), 'RMSE Producto': model_instance.rmse.get('product', np.nan)
                    })
                    fig = model_instance.plot_results(
                        time_exp, biomass_exp, substrate_exp, product_exp,
                        y_pred_biomass, y_pred_substrate, y_pred_product, # Pass curve_fit results
                        biomass_std_exp, substrate_std_exp, product_std_exp,
                        current_experiment_name, legend_position, params_position,
                        show_legend, show_params, style, line_color, point_color, line_style, marker_style,
                        use_differential, axis_labels_dict,
                        show_error_bars, error_cap_size, error_line_width
                    )
                    if fig: figures.append(fig)

        elif mode in ['average', 'combinado']:
            # ... (average/combinado mode logic remains largely the same)
            current_experiment_name = f"{current_experiment_name_base} - Promedio"
            time_avg = model_dummy_for_sheet.time
            
            # Check if dataxp, datasp, datapp are available from process_data
            biomass_avg = model_dummy_for_sheet.dataxp[-1] if model_dummy_for_sheet.dataxp and len(model_dummy_for_sheet.dataxp[-1]) > 0 else np.array([])
            substrate_avg = model_dummy_for_sheet.datasp[-1] if model_dummy_for_sheet.datasp and len(model_dummy_for_sheet.datasp[-1]) > 0 else np.array([])
            product_avg = model_dummy_for_sheet.datapp[-1] if model_dummy_for_sheet.datapp and len(model_dummy_for_sheet.datapp[-1]) > 0 else np.array([])

            biomass_std_avg = model_dummy_for_sheet.datax_std[-1] if model_dummy_for_sheet.datax_std and len(model_dummy_for_sheet.datax_std[-1]) == len(biomass_avg) else None
            substrate_std_avg = model_dummy_for_sheet.datas_std[-1] if model_dummy_for_sheet.datas_std and len(model_dummy_for_sheet.datas_std[-1]) == len(substrate_avg) else None
            product_std_avg = model_dummy_for_sheet.datap_std[-1] if model_dummy_for_sheet.datap_std and len(model_dummy_for_sheet.datap_std[-1]) == len(product_avg) else None

            if time_avg is None or len(time_avg) == 0: all_plot_messages.append(f"Sin datos de tiempo promedio para '{sheet_name}'."); continue
            if len(biomass_avg) == 0:
                all_plot_messages.append(f"Sin datos de biomasa promedio para '{sheet_name}'.")
                for mt in model_types_selected: comparison_data.append({'Experimento': current_experiment_name, 'Modelo': mt.capitalize(), 'R² Biomasa': np.nan, 'RMSE Biomasa': np.nan})
                continue
            
            for model_type_iter in model_types_selected:
                model_instance = BioprocessModel(model_type=model_type_iter, maxfev=maxfev_val)
                model_instance.fit_model()
                y_pred_biomass = model_instance.fit_biomass(time_avg, biomass_avg)
                y_pred_substrate, y_pred_product = None, None
                if y_pred_biomass is not None and model_instance.params.get('biomass'):
                    if len(substrate_avg) > 0: y_pred_substrate = model_instance.fit_substrate(time_avg, substrate_avg, model_instance.params['biomass'])
                    if len(product_avg) > 0: y_pred_product = model_instance.fit_product(time_avg, product_avg, model_instance.params['biomass'])
                else: all_plot_messages.append(f"Ajuste biomasa promedio falló: {current_experiment_name}, {model_type_iter}.")

                comparison_data.append({
                    'Experimento': current_experiment_name, 'Modelo': model_type_iter.capitalize(),
                    'R² Biomasa': model_instance.r2.get('biomass', np.nan), 'RMSE Biomasa': model_instance.rmse.get('biomass', np.nan),
                    'R² Sustrato': model_instance.r2.get('substrate', np.nan), 'RMSE Sustrato': model_instance.rmse.get('substrate', np.nan),
                    'R² Producto': model_instance.r2.get('product', np.nan), 'RMSE Producto': model_instance.rmse.get('product', np.nan)
                })
                plot_func = model_instance.plot_combined_results if mode == 'combinado' else model_instance.plot_results
                fig = plot_func(
                    time_avg, biomass_avg, substrate_avg, product_avg,
                    y_pred_biomass, y_pred_substrate, y_pred_product, # Pass curve_fit results
                    biomass_std_avg, substrate_std_avg, product_std_avg,
                    current_experiment_name, legend_position, params_position,
                    show_legend, show_params, style, line_color, point_color, line_style, marker_style,
                    use_differential, axis_labels_dict,
                    show_error_bars, error_cap_size, error_line_width
                )
                if fig: figures.append(fig)

    comparison_df = pd.DataFrame(comparison_data)
    if not comparison_df.empty:
        for col in ['R² Biomasa', 'RMSE Biomasa', 'R² Sustrato', 'RMSE Sustrato', 'R² Producto', 'RMSE Producto']:
            if col in comparison_df.columns: comparison_df[col] = pd.to_numeric(comparison_df[col], errors='coerce')
        comparison_df_sorted = comparison_df.sort_values(
            by=['Experimento', 'Modelo', 'R² Biomasa', 'R² Sustrato', 'R² Producto', 'RMSE Biomasa', 'RMSE Sustrato', 'RMSE Producto'],
            ascending=[True, True, False, False, False, True, True, True]
        ).reset_index(drop=True)
    else:
        comparison_df_sorted = pd.DataFrame(columns=[
            'Experimento', 'Modelo', 'R² Biomasa', 'RMSE Biomasa',
            'R² Sustrato', 'RMSE Sustrato', 'R² Producto', 'RMSE Producto'
        ])

    final_message = "Procesamiento completado."
    if all_plot_messages: final_message += " Mensajes:\n" + "\n".join(all_plot_messages)
    if not figures and not comparison_df_sorted.empty: final_message += "\nNo se generaron gráficos, pero hay datos en la tabla."
    elif not figures and comparison_df_sorted.empty: final_message += "\nNo se generaron gráficos ni datos para la tabla."
    return figures, comparison_df_sorted, final_message


MODEL_CHOICES = [
    ("Logistic (3-parám)", "logistic"),
    ("Gompertz (3-parám)", "gompertz"),
    ("Moser (3-parám)", "moser"),
    ("Baranyi (4-parám)", "baranyi")
    # Add more models here as ("Display Name (X-param)", "internal_model_name")
]

def create_interface():
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("# Modelos Cinéticos de Bioprocesos")
        # ... (Markdown descriptions remain the same)
        gr.Markdown(r"""
        Análisis y visualización de datos de bioprocesos utilizando modelos cinéticos como Logístico, Gompertz y Moser para el crecimiento de biomasa,
        y el modelo de Luedeking-Piret para el consumo de sustrato y la formación de producto.
        Nuevos modelos como Baranyi (4 parámetros) han sido añadidos.

        **Instrucciones:**
        1.  Sube un archivo Excel. El archivo debe tener una estructura de MultiIndex en las columnas:
            - Nivel 0: Nombre del experimento/tratamiento (ej: "Control", "Tratamiento A")
            - Nivel 1: Tipo de dato ("Tiempo", "Biomasa", "Sustrato", "Producto")
            - Si hay réplicas, deben estar como columnas separadas bajo el mismo nombre de experimento (Nivel 0) y tipo de dato (Nivel 1).
              Ejemplo: (Control, Biomasa, Rep1), (Control, Biomasa, Rep2). El código promediará estas réplicas para los modos "average" y "combinado".
              Para el modo "independent", se asume una sola serie de datos por (Experimento, TipoDato).
        2.  Selecciona el/los tipo(s) de modelo(s) de biomasa a ajustar. Los modelos están agrupados por el número de parámetros.
        3.  Elige el modo de análisis:
            - `independent`: Analiza cada experimento (columna de Nivel 0) individualmente.
            - `average`: Promedia los datos de todos los experimentos dentro de una hoja y ajusta los modelos a estos promedios. Se grafica en subplots separados.
            - `combinado`: Similar a `average`, pero grafica Biomasa, Sustrato y Producto en un solo gráfico con múltiples ejes Y.
        4.  Configura las opciones de graficación (leyenda, parámetros, estilos, colores, etc.).
        5.  (Opcional) Personaliza los nombres de los experimentos y los títulos de los ejes.
        6.  Haz clic en "Simular" para generar los gráficos y la tabla comparativa.
        7.  Puedes exportar la tabla de resultados a Excel o CSV.
        """)
        gr.Markdown(r"""
        ## Ecuaciones Diferenciales Utilizadas (Simplificado)

        **Biomasa:**

        - Logístico (3p: $X_0, X_m, \mu_m$):
        $$ X(t) = \frac{X_0 X_m e^{\mu_m t}}{X_m - X_0 + X_0 e^{\mu_m t}} \quad \text{o} \quad \frac{dX}{dt} = \mu_m X\left(1 - \frac{X}{X_m}\right) $$

        - Gompertz (3p: $X_m, \mu_m, \lambda$):
        $$ X(t) = X_m \exp\left(-\exp\left(\frac{\mu_m e}{X_m}(\lambda-t)+1\right)\right) \quad \text{o} \quad \frac{dX}{dt} = \mu_m X \ln\left(\frac{X_m}{X}\right) \text{ (forma alternativa)} $$
        
        - Moser (3p: $X_m, \mu_m, K_s$ - forma simplificada):
        $$ X(t)=X_m(1-e^{-\mu_m(t-K_s)}) \quad \text{o} \quad \frac{dX}{dt}=\mu_m(X_m - X) $$

        - Baranyi (4p: $X_0, X_m, \mu_m, \lambda$):
        $$ \ln X(t) = \ln X_0 + \mu_m A(t) - \ln\left(1 + \frac{e^{\mu_m A(t)}-1}{X_m/X_0}\right) $$
        $$ A(t) = t + \frac{1}{\mu_m} \ln(e^{-\mu_m t} + e^{-\mu_m \lambda} - e^{-\mu_m(t+\lambda)}) $$
        (Ecuación diferencial compleja, no usada para ODE en esta versión)

        **Sustrato y Producto (Luedeking-Piret):**
        $$ \frac{dS}{dt} = -p \frac{dX}{dt} - q X \quad ; \quad \frac{dP}{dt} = \alpha \frac{dX}{dt} + \beta X $$
        Parámetros: $X_m, \mu_m, X_0, \lambda (\text{lag}), K_s, p, q, \alpha, \beta$.
        """)


        with gr.Row():
            file_input = gr.File(label="Subir archivo Excel (.xlsx)", file_types=['.xlsx'])
            mode = gr.Radio(["independent", "average", "combinado"], label="Modo de Análisis", value="independent",
                            info="Independent: cada experimento. Average/Combinado: promedio de la hoja.")

        with gr.Accordion("Configuración de Modelos y Simulación", open=True): # Open by default
            model_types_selected_ui = gr.CheckboxGroup(
                choices=MODEL_CHOICES, # Use the global list of (DisplayName, value)
                label="Tipo(s) de Modelo de Biomasa",
                value=["logistic"] # Default selected internal value
            )
            use_differential_ui = gr.Checkbox(label="Usar Ecuaciones Diferenciales para Graficar (experimental)", value=False,
                                           info="Si se marca, las curvas se generan resolviendo las EDOs (si el modelo lo soporta). Si no, por ajuste directo.")
            maxfev_input_ui = gr.Number(label="maxfev (Máx. evaluaciones para el ajuste)", value=50000, minimum=1000, step=1000)
            experiment_names_str_ui = gr.Textbox(
                label="Nombres de los experimentos/hojas (uno por línea, opcional)",
                placeholder="Nombre para Hoja 1\nNombre para Hoja 2\n...",
                lines=3,
                info="Si se deja vacío, se usarán los nombres de las hojas o 'Exp X'."
            )
        # ... (rest of the UI for graph settings, axis labels, error bars remains the same)
        with gr.Accordion("Configuración de Gráficos", open=False):
            with gr.Row():
                with gr.Column(scale=1):
                    legend_position_ui = gr.Radio(choices=["upper left", "upper right", "lower left", "lower right", "best"], label="Posición de Leyenda", value="best")
                    show_legend_ui = gr.Checkbox(label="Mostrar Leyenda", value=True)
                with gr.Column(scale=1):
                    params_position_ui = gr.Radio(choices=["upper left", "upper right", "lower left", "lower right", "outside right"], label="Posición de Parámetros", value="upper right")
                    show_params_ui = gr.Checkbox(label="Mostrar Parámetros", value=True)
            with gr.Row():
                style_dropdown_ui = gr.Dropdown(choices=['white', 'dark', 'whitegrid', 'darkgrid', 'ticks'], label="Estilo de Gráfico (Seaborn)", value='whitegrid')
                line_color_picker_ui = gr.ColorPicker(label="Color de Línea (Modelo)", value='#0072B2')
                point_color_picker_ui = gr.ColorPicker(label="Color de Puntos (Datos)", value='#D55E00')
            with gr.Row():
                line_style_dropdown_ui = gr.Dropdown(choices=['-', '--', '-.', ':'], label="Estilo de Línea", value='-')
                marker_style_dropdown_ui = gr.Dropdown(choices=['o', 's', '^', 'v', 'D', 'x', '+', '*'], label="Estilo de Marcador (Puntos)", value='o')
            with gr.Row():
                x_axis_label_input_ui = gr.Textbox(label="Título Eje X", value="Tiempo (h)", placeholder="Tiempo (unidades)")
                biomass_axis_label_input_ui = gr.Textbox(label="Título Eje Y (Biomasa)", value="Biomasa (g/L)", placeholder="Biomasa (unidades)")
            with gr.Row():
                substrate_axis_label_input_ui = gr.Textbox(label="Título Eje Y (Sustrato)", value="Sustrato (g/L)", placeholder="Sustrato (unidades)")
                product_axis_label_input_ui = gr.Textbox(label="Título Eje Y (Producto)", value="Producto (g/L)", placeholder="Producto (unidades)")
            with gr.Row():
                show_error_bars_ui = gr.Checkbox(label="Mostrar barras de error", value=True)
                error_cap_size_ui = gr.Slider(label="Tamaño de tapa de barras de error", minimum=1, maximum=10, step=1, value=3)
                error_line_width_ui = gr.Slider(label="Grosor de línea de error", minimum=0.5, maximum=5, step=0.5, value=1.0)

        with gr.Accordion("Configuración Avanzada de Ajuste (No implementado aún)", open=False):
            with gr.Row():
                lower_bounds_str_ui = gr.Textbox(label="Lower Bounds (no usado actualmente)", lines=3)
                upper_bounds_str_ui = gr.Textbox(label="Upper Bounds (no usado actualmente)", lines=3)

        simulate_btn = gr.Button("Simular y Graficar", variant="primary")
        status_message_ui = gr.Textbox(label="Estado del Procesamiento", interactive=False)
        output_gallery_ui = gr.Gallery(label="Resultados Gráficos", columns=[2,1], height='auto', object_fit="contain")
        output_table_ui = gr.Dataframe(
            label="Tabla Comparativa de Modelos",
            headers=["Experimento", "Modelo", "R² Biomasa", "RMSE Biomasa",
                    "R² Sustrato", "RMSE Sustrato", "R² Producto", "RMSE Producto"],
            interactive=False, wrap=True
        )
        state_df_ui = gr.State(pd.DataFrame()) # To store the dataframe for export

        def run_simulation_interface(file, legend_pos, params_pos, models_sel, analysis_mode, exp_names,
                                     low_bounds, up_bounds, plot_style,
                                     line_col, point_col, line_sty, marker_sty,
                                     show_leg, show_par, use_diff, maxfev,
                                     x_label, biomass_label, substrate_label, product_label,
                                     show_error_bars_arg, error_cap_size_arg, error_line_width_arg):
            if file is None: return [], pd.DataFrame(), "Error: Por favor, sube un archivo Excel.", pd.DataFrame()
            axis_labels = {
                'x_label': x_label if x_label else 'Tiempo',
                'biomass_label': biomass_label if biomass_label else 'Biomasa',
                'substrate_label': substrate_label if substrate_label else 'Sustrato',
                'product_label': product_label if product_label else 'Producto'
            }
            if not models_sel: return [], pd.DataFrame(), "Error: Por favor, selecciona al menos un modelo.", pd.DataFrame()

            figures, comparison_df, message = process_all_data(
                file, legend_pos, params_pos, models_sel, exp_names,
                low_bounds, up_bounds, analysis_mode, plot_style,
                line_col, point_col, line_sty, marker_sty,
                show_leg, show_par, use_diff, int(maxfev),
                axis_labels, show_error_bars_arg, error_cap_size_arg, error_line_width_arg
            )
            return figures, comparison_df, message, comparison_df

        simulate_btn.click(
            fn=run_simulation_interface,
            inputs=[
                file_input, legend_position_ui, params_position_ui, model_types_selected_ui, mode, experiment_names_str_ui,
                lower_bounds_str_ui, upper_bounds_str_ui, style_dropdown_ui,
                line_color_picker_ui, point_color_picker_ui, line_style_dropdown_ui, marker_style_dropdown_ui,
                show_legend_ui, show_params_ui, use_differential_ui, maxfev_input_ui,
                x_axis_label_input_ui, biomass_axis_label_input_ui, substrate_axis_label_input_ui, product_axis_label_input_ui,
                show_error_bars_ui, error_cap_size_ui, error_line_width_ui
            ],
            outputs=[output_gallery_ui, output_table_ui, status_message_ui, state_df_ui]
        )

        with gr.Row():
            export_excel_btn = gr.Button("Exportar Tabla a Excel")
            export_csv_btn = gr.Button("Exportar Tabla a CSV")
        
        download_file_output_ui = gr.File(label="Descargar archivo", interactive=False)

        def export_excel_interface(df_to_export):
            if df_to_export is None or df_to_export.empty:
                with tempfile.NamedTemporaryFile(suffix=".txt", delete=False) as tmp: tmp.write(b"No hay datos para exportar."); return tmp.name
            try:
                with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False, mode='w+b') as tmp:
                    df_to_export.to_excel(tmp.name, index=False); return tmp.name
            except Exception as e:
                with tempfile.NamedTemporaryFile(suffix=".txt", delete=False) as tmp: tmp.write(f"Error al exportar a Excel: {e}".encode()); return tmp.name
        
        export_excel_btn.click(fn=export_excel_interface, inputs=state_df_ui, outputs=download_file_output_ui)

        def export_csv_interface(df_to_export):
            if df_to_export is None or df_to_export.empty:
                with tempfile.NamedTemporaryFile(suffix=".txt", delete=False) as tmp: tmp.write(b"No hay datos para exportar."); return tmp.name
            try:
                with tempfile.NamedTemporaryFile(suffix=".csv", delete=False, mode='w', encoding='utf-8') as tmp: # CSV is text
                    df_to_export.to_csv(tmp.name, index=False); return tmp.name
            except Exception as e:
                with tempfile.NamedTemporaryFile(suffix=".txt", delete=False) as tmp: tmp.write(f"Error al exportar a CSV: {e}".encode()); return tmp.name

        export_csv_btn.click(fn=export_csv_interface, inputs=state_df_ui, outputs=download_file_output_ui)
        
        gr.Examples(
            examples=[
                [None, "best", "upper right", ["logistic", "baranyi"], "independent", "Exp A\nExp B", "", "", "whitegrid", "#0072B2", "#D55E00", "-", "o", True, True, False, 50000, "Tiempo (días)", "Células (millones/mL)", "Glucosa (mM)", "Anticuerpo (mg/L)", True, 3, 1.0]
            ],
            inputs=[
                file_input, legend_position_ui, params_position_ui, model_types_selected_ui, mode, experiment_names_str_ui,
                lower_bounds_str_ui, upper_bounds_str_ui, style_dropdown_ui,
                line_color_picker_ui, point_color_picker_ui, line_style_dropdown_ui, marker_style_dropdown_ui,
                show_legend_ui, show_params_ui, use_differential_ui, maxfev_input_ui,
                x_axis_label_input_ui, biomass_axis_label_input_ui, substrate_axis_label_input_ui, product_axis_label_input_ui,
                show_error_bars_ui, error_cap_size_ui, error_line_width_ui
            ],
            label="Ejemplo de Configuración (subir archivo manualmente)"
        )
    return demo

if __name__ == '__main__':
    demo_instance = create_interface()
    demo_instance.launch(share=True)