|
import os |
|
|
|
os.system("pip install --upgrade gradio") |
|
|
|
from pydantic import BaseModel, ConfigDict |
|
import numpy as np |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from scipy.integrate import odeint |
|
from scipy.optimize import curve_fit |
|
from sklearn.metrics import mean_squared_error |
|
import gradio as gr |
|
import io |
|
from PIL import Image |
|
import tempfile |
|
|
|
class YourModel(BaseModel): |
|
class Config: |
|
arbitrary_types_allowed = True |
|
|
|
class BioprocessModel: |
|
def __init__(self, model_type='logistic', maxfev=50000): |
|
self.params = {} |
|
self.r2 = {} |
|
self.rmse = {} |
|
self.datax = [] |
|
self.datas = [] |
|
self.datap = [] |
|
self.dataxp = [] |
|
self.datasp = [] |
|
self.datapp = [] |
|
self.datax_std = [] |
|
self.datas_std = [] |
|
self.datap_std = [] |
|
self.biomass_model = None |
|
self.biomass_diff = None |
|
self.model_type = model_type |
|
self.maxfev = maxfev |
|
self.time = None |
|
|
|
@staticmethod |
|
def logistic(time, xo, xm, um): |
|
|
|
if xm == 0 or (xo / xm == 1 and np.any(um * time > 0)): |
|
return np.full_like(time, np.nan) |
|
|
|
term_exp = np.exp(um * time) |
|
denominator = (1 - (xo / xm) * (1 - term_exp)) |
|
denominator = np.where(denominator == 0, 1e-9, denominator) |
|
|
|
|
|
return (xo * term_exp) / denominator |
|
|
|
@staticmethod |
|
def gompertz(time, xm, um, lag): |
|
|
|
if xm == 0: |
|
return np.full_like(time, np.nan) |
|
|
|
exp_term = (um * np.e / xm) * (lag - time) + 1 |
|
|
|
exp_term_clipped = np.clip(exp_term, -np.inf, 700) |
|
return xm * np.exp(-np.exp(exp_term_clipped)) |
|
|
|
@staticmethod |
|
def moser(time, Xm, um, Ks): |
|
|
|
|
|
return Xm * (1 - np.exp(-um * (time - Ks))) |
|
|
|
@staticmethod |
|
def baranyi(time, X0, Xm, um, lag): |
|
|
|
|
|
if X0 <= 0 or Xm <= X0 or um <= 0: |
|
return np.full_like(time, np.nan) |
|
|
|
|
|
|
|
|
|
|
|
log_arg_A = np.exp(-um * t) + np.exp(-um * lag) - np.exp(-um * (t + lag)) |
|
log_arg_A = np.where(log_arg_A <= 1e-9, 1e-9, log_arg_A) |
|
A_t = t + (1 / um) * np.log(log_arg_A) |
|
|
|
|
|
exp_um_At = np.exp(um * A_t) |
|
|
|
exp_um_At_clipped = np.clip(exp_um_At, -np.inf, 700) |
|
|
|
numerator = (Xm / X0) * exp_um_At_clipped |
|
denominator = (Xm / X0 - 1) + exp_um_At_clipped |
|
denominator = np.where(denominator == 0, 1e-9, denominator) |
|
|
|
return X0 * (numerator / denominator) |
|
|
|
|
|
@staticmethod |
|
def logistic_diff(X, t, params): |
|
|
|
_, xm, um = params |
|
if xm == 0: return 0 |
|
return um * X * (1 - X / xm) |
|
|
|
@staticmethod |
|
def gompertz_diff(X, t, params): |
|
|
|
xm, um, lag = params |
|
if xm == 0: return 0 |
|
|
|
|
|
|
|
|
|
|
|
k_val = um * np.e / xm |
|
u_val = k_val * (lag - t) + 1 |
|
u_val_clipped = np.clip(u_val, -np.inf, 700) |
|
return X * k_val * np.exp(u_val_clipped) |
|
|
|
|
|
@staticmethod |
|
def moser_diff(X, t, params): |
|
|
|
Xm, um, _ = params |
|
return um * (Xm - X) |
|
|
|
|
|
|
|
def substrate(self, time, so, p, q, biomass_params_list): |
|
if self.biomass_model is None or not biomass_params_list: |
|
return np.full_like(time, np.nan) |
|
X_t = self.biomass_model(time, *biomass_params_list) |
|
if np.any(np.isnan(X_t)): |
|
return np.full_like(time, np.nan) |
|
|
|
integral_X = np.zeros_like(X_t) |
|
if len(time) > 1: |
|
dt = np.diff(time, prepend=time[0] - (time[1]-time[0] if len(time)>1 else 1)) |
|
integral_X = np.cumsum(X_t * dt) |
|
|
|
|
|
if self.model_type == 'logistic' or self.model_type == 'baranyi': |
|
X0 = biomass_params_list[0] |
|
elif self.model_type == 'gompertz': |
|
X0 = self.gompertz(0, *biomass_params_list) |
|
elif self.model_type == 'moser': |
|
X0 = self.moser(0, *biomass_params_list) |
|
else: |
|
X0 = X_t[0] |
|
|
|
X0 = X0 if not np.isnan(X0) else (biomass_params_list[0] if biomass_params_list else 0) |
|
|
|
|
|
return so - p * (X_t - X0) - q * integral_X |
|
|
|
def product(self, time, po, alpha, beta, biomass_params_list): |
|
if self.biomass_model is None or not biomass_params_list: |
|
return np.full_like(time, np.nan) |
|
X_t = self.biomass_model(time, *biomass_params_list) |
|
if np.any(np.isnan(X_t)): |
|
return np.full_like(time, np.nan) |
|
|
|
integral_X = np.zeros_like(X_t) |
|
if len(time) > 1: |
|
dt = np.diff(time, prepend=time[0] - (time[1]-time[0] if len(time)>1 else 1)) |
|
integral_X = np.cumsum(X_t * dt) |
|
|
|
if self.model_type == 'logistic' or self.model_type == 'baranyi': |
|
X0 = biomass_params_list[0] |
|
elif self.model_type == 'gompertz': |
|
X0 = self.gompertz(0, *biomass_params_list) |
|
elif self.model_type == 'moser': |
|
X0 = self.moser(0, *biomass_params_list) |
|
else: |
|
X0 = X_t[0] |
|
|
|
X0 = X0 if not np.isnan(X0) else (biomass_params_list[0] if biomass_params_list else 0) |
|
|
|
return po + alpha * (X_t - X0) + beta * integral_X |
|
|
|
def process_data(self, df): |
|
|
|
biomass_cols = [col for col in df.columns if col[1] == 'Biomasa'] |
|
substrate_cols = [col for col in df.columns if col[1] == 'Sustrato'] |
|
product_cols = [col for col in df.columns if col[1] == 'Producto'] |
|
|
|
if not any(col[1] == 'Tiempo' for col in df.columns): |
|
raise ValueError("La columna 'Tiempo' no se encuentra en el DataFrame.") |
|
time_col = [col for col in df.columns if col[1] == 'Tiempo'][0] |
|
time = df[time_col].dropna().values |
|
|
|
if len(biomass_cols) > 0: |
|
data_biomass = [df[col].dropna().values for col in biomass_cols] |
|
|
|
min_len = len(time) |
|
data_biomass_aligned = [] |
|
for rep_data in data_biomass: |
|
if len(rep_data) == min_len: |
|
data_biomass_aligned.append(rep_data) |
|
|
|
|
|
if data_biomass_aligned: |
|
data_biomass_np = np.array(data_biomass_aligned) |
|
self.datax.append(data_biomass_np) |
|
self.dataxp.append(np.mean(data_biomass_np, axis=0)) |
|
self.datax_std.append(np.std(data_biomass_np, axis=0, ddof=1)) |
|
else: |
|
self.datax.append(np.array([])) |
|
self.dataxp.append(np.array([])) |
|
self.datax_std.append(np.array([])) |
|
|
|
else: |
|
self.datax.append(np.array([])) |
|
self.dataxp.append(np.array([])) |
|
self.datax_std.append(np.array([])) |
|
|
|
|
|
if len(substrate_cols) > 0: |
|
data_substrate = [df[col].dropna().values for col in substrate_cols] |
|
min_len = len(time) |
|
data_substrate_aligned = [] |
|
for rep_data in data_substrate: |
|
if len(rep_data) == min_len: |
|
data_substrate_aligned.append(rep_data) |
|
|
|
if data_substrate_aligned: |
|
data_substrate_np = np.array(data_substrate_aligned) |
|
self.datas.append(data_substrate_np) |
|
self.datasp.append(np.mean(data_substrate_np, axis=0)) |
|
self.datas_std.append(np.std(data_substrate_np, axis=0, ddof=1)) |
|
else: |
|
self.datas.append(np.array([])) |
|
self.datasp.append(np.array([])) |
|
self.datas_std.append(np.array([])) |
|
else: |
|
self.datas.append(np.array([])) |
|
self.datasp.append(np.array([])) |
|
self.datas_std.append(np.array([])) |
|
|
|
if len(product_cols) > 0: |
|
data_product = [df[col].dropna().values for col in product_cols] |
|
min_len = len(time) |
|
data_product_aligned = [] |
|
for rep_data in data_product: |
|
if len(rep_data) == min_len: |
|
data_product_aligned.append(rep_data) |
|
|
|
if data_product_aligned: |
|
data_product_np = np.array(data_product_aligned) |
|
self.datap.append(data_product_np) |
|
self.datapp.append(np.mean(data_product_np, axis=0)) |
|
self.datap_std.append(np.std(data_product_np, axis=0, ddof=1)) |
|
else: |
|
self.datap.append(np.array([])) |
|
self.datapp.append(np.array([])) |
|
self.datap_std.append(np.array([])) |
|
else: |
|
self.datap.append(np.array([])) |
|
self.datapp.append(np.array([])) |
|
self.datap_std.append(np.array([])) |
|
|
|
self.time = time |
|
|
|
|
|
def fit_model(self): |
|
if self.model_type == 'logistic': |
|
self.biomass_model = self.logistic |
|
self.biomass_diff = self.logistic_diff |
|
elif self.model_type == 'gompertz': |
|
self.biomass_model = self.gompertz |
|
self.biomass_diff = self.gompertz_diff |
|
elif self.model_type == 'moser': |
|
self.biomass_model = self.moser |
|
self.biomass_diff = self.moser_diff |
|
elif self.model_type == 'baranyi': |
|
self.biomass_model = self.baranyi |
|
self.biomass_diff = None |
|
else: |
|
raise ValueError(f"Modelo de biomasa desconocido: {self.model_type}") |
|
|
|
|
|
def fit_biomass(self, time, biomass): |
|
|
|
time = np.asarray(time, dtype=float) |
|
biomass = np.asarray(biomass, dtype=float) |
|
if len(time) != len(biomass): |
|
print("Error: Tiempo y biomasa deben tener la misma longitud.") |
|
return None |
|
if np.any(np.isnan(time)) or np.any(np.isnan(biomass)): |
|
print("Error: Tiempo o biomasa contienen NaNs.") |
|
|
|
valid_indices = ~np.isnan(time) & ~np.isnan(biomass) |
|
time = time[valid_indices] |
|
biomass = biomass[valid_indices] |
|
if len(time) < 3: |
|
print("No hay suficientes datos válidos después de remover NaNs.") |
|
return None |
|
|
|
try: |
|
if len(np.unique(biomass)) < 2 : |
|
print(f"Biomasa constante para {self.model_type}, no se puede ajustar el modelo.") |
|
self.r2['biomass'] = np.nan; self.rmse['biomass'] = np.nan |
|
return None |
|
|
|
popt = None |
|
if self.model_type == 'logistic': |
|
xo_guess = biomass[0] if biomass[0] > 1e-6 else 1e-3 |
|
xm_guess = max(biomass) * 1.1 if max(biomass) > xo_guess else xo_guess * 2 |
|
if xm_guess <= xo_guess: xm_guess = xo_guess + 1e-3 |
|
p0 = [xo_guess, xm_guess, 0.1] |
|
bounds = ([1e-9, biomass[0] if biomass[0]>1e-9 else 1e-9, 1e-9], [max(biomass)*0.99 if max(biomass)>0 else 1, np.inf, np.inf]) |
|
|
|
p0[0] = np.clip(p0[0], bounds[0][0], bounds[1][0]) |
|
popt, _ = curve_fit(self.logistic, time, biomass, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9) |
|
if popt[1] <= popt[0]: |
|
print(f"Advertencia: En modelo logístico, Xm ({popt[1]:.2f}) no es mayor que Xo ({popt[0]:.2f}). Ajuste puede no ser válido.") |
|
self.params['biomass'] = {'Xo': popt[0], 'Xm': popt[1], 'um': popt[2]} |
|
y_pred = self.logistic(time, *popt) |
|
|
|
elif self.model_type == 'gompertz': |
|
xm_guess = max(biomass) if max(biomass) > 0 else 1.0 |
|
um_guess = 0.1 |
|
|
|
min_bio = min(biomass) |
|
lag_thresh = min_bio + 0.1 * (max(biomass) - min_bio) |
|
lag_indices = np.where(biomass > lag_thresh)[0] |
|
lag_guess = time[lag_indices[0]] if len(lag_indices) > 0 else time[0] |
|
|
|
p0 = [xm_guess, um_guess, lag_guess] |
|
bounds = ([min(biomass) if min(biomass)>1e-9 else 1e-9, 1e-9, 0], |
|
[np.inf, np.inf, max(time) if len(time)>0 else 100]) |
|
popt, _ = curve_fit(self.gompertz, time, biomass, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9) |
|
self.params['biomass'] = {'Xm': popt[0], 'um': popt[1], 'lag': popt[2]} |
|
y_pred = self.gompertz(time, *popt) |
|
|
|
elif self.model_type == 'moser': |
|
Xm_guess = max(biomass) if max(biomass) > 0 else 1.0 |
|
um_guess = 0.1 |
|
Ks_guess = time[0] |
|
p0 = [Xm_guess, um_guess, Ks_guess] |
|
bounds = ([min(biomass) if min(biomass)>1e-9 else 1e-9, 1e-9, -max(time) if len(time)>0 else -100], |
|
[np.inf, np.inf, max(time) if len(time)>0 else 100]) |
|
popt, _ = curve_fit(self.moser, time, biomass, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9) |
|
self.params['biomass'] = {'Xm': popt[0], 'um': popt[1], 'Ks': popt[2]} |
|
y_pred = self.moser(time, *popt) |
|
|
|
elif self.model_type == 'baranyi': |
|
X0_guess = biomass[0] if biomass[0] > 1e-6 else 1e-3 |
|
Xm_guess = max(biomass) if max(biomass) > X0_guess else X0_guess * 2 |
|
if Xm_guess <= X0_guess: Xm_guess = X0_guess + 1e-3 |
|
um_guess = 0.1 |
|
min_bio = X0_guess |
|
lag_thresh = min_bio + 0.1 * (Xm_guess - min_bio) |
|
lag_indices = np.where(biomass > lag_thresh)[0] |
|
lag_guess = time[lag_indices[0]] if len(lag_indices) > 0 and time[lag_indices[0]] > 0 else (time[0] if time[0] > 1e-9 else 1e-9) |
|
if lag_guess <= 0: lag_guess = 1e-9 |
|
|
|
p0 = [X0_guess, Xm_guess, um_guess, lag_guess] |
|
bounds = ( |
|
[1e-9, biomass[0] if biomass[0]>1e-9 else 1e-9, 1e-9, 1e-9], |
|
[max(biomass)*0.99 if max(biomass)>0 else 1, np.inf, np.inf, max(time) if len(time)>0 else 100] |
|
) |
|
p0[0] = np.clip(p0[0], bounds[0][0], bounds[1][0]) |
|
p0[3] = np.clip(p0[3], bounds[0][3], bounds[1][3]) |
|
|
|
popt, _ = curve_fit(self.baranyi, time, biomass, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9) |
|
if popt[1] <= popt[0]: |
|
print(f"Advertencia: En modelo Baranyi, Xm ({popt[1]:.2f}) no es mayor que X0 ({popt[0]:.2f}). Ajuste puede no ser válido.") |
|
self.params['biomass'] = {'X0': popt[0], 'Xm': popt[1], 'um': popt[2], 'lag': popt[3]} |
|
y_pred = self.baranyi(time, *popt) |
|
|
|
else: |
|
print(f"Modelo {self.model_type} no implementado para ajuste de biomasa.") |
|
return None |
|
|
|
if np.any(np.isnan(y_pred)) or np.any(np.isinf(y_pred)): |
|
print(f"Predicción de biomasa contiene NaN/Inf para {self.model_type}. Ajuste fallido.") |
|
self.r2['biomass'] = np.nan; self.rmse['biomass'] = np.nan |
|
return None |
|
|
|
ss_res = np.sum((biomass - y_pred) ** 2) |
|
ss_tot = np.sum((biomass - np.mean(biomass)) ** 2) |
|
if ss_tot == 0: |
|
self.r2['biomass'] = 1.0 if ss_res < 1e-9 else 0.0 |
|
else: |
|
self.r2['biomass'] = 1 - (ss_res / ss_tot) |
|
self.rmse['biomass'] = np.sqrt(mean_squared_error(biomass, y_pred)) |
|
return y_pred |
|
|
|
except RuntimeError as e: |
|
print(f"Error de Runtime en fit_biomass_{self.model_type} (probablemente no se pudo ajustar): {e}") |
|
self.params['biomass'] = {} |
|
self.r2['biomass'] = np.nan; self.rmse['biomass'] = np.nan |
|
return None |
|
except Exception as e: |
|
print(f"Error general en fit_biomass_{self.model_type}: {e}") |
|
self.params['biomass'] = {} |
|
self.r2['biomass'] = np.nan; self.rmse['biomass'] = np.nan |
|
return None |
|
|
|
def fit_substrate(self, time, substrate, biomass_params_dict): |
|
if not biomass_params_dict: |
|
print(f"Error en fit_substrate_{self.model_type}: Parámetros de biomasa no disponibles.") |
|
return None |
|
try: |
|
|
|
if self.model_type == 'logistic': |
|
|
|
biomass_params_values = [biomass_params_dict['Xo'], biomass_params_dict['Xm'], biomass_params_dict['um']] |
|
elif self.model_type == 'gompertz': |
|
|
|
biomass_params_values = [biomass_params_dict['Xm'], biomass_params_dict['um'], biomass_params_dict['lag']] |
|
elif self.model_type == 'moser': |
|
|
|
biomass_params_values = [biomass_params_dict['Xm'], biomass_params_dict['um'], biomass_params_dict['Ks']] |
|
elif self.model_type == 'baranyi': |
|
|
|
biomass_params_values = [biomass_params_dict['X0'], biomass_params_dict['Xm'], biomass_params_dict['um'], biomass_params_dict['lag']] |
|
else: |
|
return None |
|
|
|
so_guess = substrate[0] if len(substrate) > 0 else 1.0 |
|
p_guess = 0.1 |
|
q_guess = 0.01 |
|
p0 = [so_guess, p_guess, q_guess] |
|
bounds = ([0, 0, 0], [np.inf, np.inf, np.inf]) |
|
|
|
popt, _ = curve_fit( |
|
lambda t, so, p, q: self.substrate(t, so, p, q, biomass_params_values), |
|
time, substrate, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9 |
|
) |
|
self.params['substrate'] = {'so': popt[0], 'p': popt[1], 'q': popt[2]} |
|
y_pred = self.substrate(time, *popt, biomass_params_values) |
|
|
|
if np.any(np.isnan(y_pred)) or np.any(np.isinf(y_pred)): |
|
print(f"Predicción de sustrato contiene NaN/Inf para {self.model_type}. Ajuste fallido.") |
|
self.r2['substrate'] = np.nan; self.rmse['substrate'] = np.nan |
|
return None |
|
|
|
ss_res = np.sum((substrate - y_pred) ** 2) |
|
ss_tot = np.sum((substrate - np.mean(substrate)) ** 2) |
|
if ss_tot == 0: self.r2['substrate'] = 1.0 if ss_res < 1e-9 else 0.0 |
|
else: self.r2['substrate'] = 1 - (ss_res / ss_tot) |
|
self.rmse['substrate'] = np.sqrt(mean_squared_error(substrate, y_pred)) |
|
return y_pred |
|
except RuntimeError as e: |
|
print(f"Error de Runtime en fit_substrate_{self.model_type}: {e}") |
|
self.params['substrate'] = {}; self.r2['substrate'] = np.nan; self.rmse['substrate'] = np.nan |
|
return None |
|
except Exception as e: |
|
print(f"Error general en fit_substrate_{self.model_type}: {e}") |
|
self.params['substrate'] = {}; self.r2['substrate'] = np.nan; self.rmse['substrate'] = np.nan |
|
return None |
|
|
|
def fit_product(self, time, product, biomass_params_dict): |
|
if not biomass_params_dict: |
|
print(f"Error en fit_product_{self.model_type}: Parámetros de biomasa no disponibles.") |
|
return None |
|
try: |
|
if self.model_type == 'logistic': |
|
biomass_params_values = [biomass_params_dict['Xo'], biomass_params_dict['Xm'], biomass_params_dict['um']] |
|
elif self.model_type == 'gompertz': |
|
biomass_params_values = [biomass_params_dict['Xm'], biomass_params_dict['um'], biomass_params_dict['lag']] |
|
elif self.model_type == 'moser': |
|
biomass_params_values = [biomass_params_dict['Xm'], biomass_params_dict['um'], biomass_params_dict['Ks']] |
|
elif self.model_type == 'baranyi': |
|
biomass_params_values = [biomass_params_dict['X0'], biomass_params_dict['Xm'], biomass_params_dict['um'], biomass_params_dict['lag']] |
|
else: |
|
return None |
|
|
|
po_guess = product[0] if len(product) > 0 else 0.0 |
|
alpha_guess = 0.1 |
|
beta_guess = 0.01 |
|
p0 = [po_guess, alpha_guess, beta_guess] |
|
bounds = ([0, 0, 0], [np.inf, np.inf, np.inf]) |
|
|
|
popt, _ = curve_fit( |
|
lambda t, po, alpha, beta: self.product(t, po, alpha, beta, biomass_params_values), |
|
time, product, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9 |
|
) |
|
self.params['product'] = {'po': popt[0], 'alpha': popt[1], 'beta': popt[2]} |
|
y_pred = self.product(time, *popt, biomass_params_values) |
|
|
|
if np.any(np.isnan(y_pred)) or np.any(np.isinf(y_pred)): |
|
print(f"Predicción de producto contiene NaN/Inf para {self.model_type}. Ajuste fallido.") |
|
self.r2['product'] = np.nan; self.rmse['product'] = np.nan |
|
return None |
|
|
|
ss_res = np.sum((product - y_pred) ** 2) |
|
ss_tot = np.sum((product - np.mean(product)) ** 2) |
|
if ss_tot == 0: self.r2['product'] = 1.0 if ss_res < 1e-9 else 0.0 |
|
else: self.r2['product'] = 1 - (ss_res / ss_tot) |
|
self.rmse['product'] = np.sqrt(mean_squared_error(product, y_pred)) |
|
return y_pred |
|
except RuntimeError as e: |
|
print(f"Error de Runtime en fit_product_{self.model_type}: {e}") |
|
self.params['product'] = {}; self.r2['product'] = np.nan; self.rmse['product'] = np.nan |
|
return None |
|
except Exception as e: |
|
print(f"Error general en fit_product_{self.model_type}: {e}") |
|
self.params['product'] = {}; self.r2['product'] = np.nan; self.rmse['product'] = np.nan |
|
return None |
|
|
|
def generate_fine_time_grid(self, time): |
|
|
|
if time is None or len(time) < 2: |
|
return np.array([0]) if (time is None or len(time)==0) else np.array(time) |
|
time_min, time_max = np.min(time), np.max(time) |
|
if time_min == time_max: |
|
return np.array([time_min]) |
|
time_fine = np.linspace(time_min, time_max, 500) |
|
return time_fine |
|
|
|
|
|
def system(self, y, t, biomass_params_list, substrate_params_list, product_params_list, model_type_for_ode): |
|
|
|
X, S, P = y |
|
dXdt = 0.0 |
|
|
|
if model_type_for_ode == 'logistic': |
|
|
|
dXdt = self.logistic_diff(X, t, biomass_params_list) |
|
elif model_type_for_ode == 'gompertz': |
|
|
|
dXdt = self.gompertz_diff(X, t, biomass_params_list) |
|
elif model_type_for_ode == 'moser': |
|
|
|
dXdt = self.moser_diff(X, t, biomass_params_list) |
|
|
|
else: |
|
|
|
print(f"Advertencia: Ecuación diferencial no definida para el modelo {model_type_for_ode} en la función 'system'. dXdt=0.") |
|
dXdt = 0.0 |
|
|
|
p_val = substrate_params_list[1] if len(substrate_params_list) > 1 else 0 |
|
q_val = substrate_params_list[2] if len(substrate_params_list) > 2 else 0 |
|
dSdt = -p_val * dXdt - q_val * X |
|
|
|
alpha_val = product_params_list[1] if len(product_params_list) > 1 else 0 |
|
beta_val = product_params_list[2] if len(product_params_list) > 2 else 0 |
|
dPdt = alpha_val * dXdt + beta_val * X |
|
return [dXdt, dSdt, dPdt] |
|
|
|
def get_initial_conditions(self, time, biomass, substrate, product): |
|
X0_exp = biomass[0] if biomass is not None and len(biomass) > 0 else 0 |
|
S0_exp = substrate[0] if substrate is not None and len(substrate) > 0 else 0 |
|
P0_exp = product[0] if product is not None and len(product) > 0 else 0 |
|
|
|
X0 = X0_exp |
|
if 'biomass' in self.params and self.params['biomass']: |
|
if self.model_type == 'logistic': |
|
X0 = self.params['biomass'].get('Xo', X0_exp) |
|
elif self.model_type == 'baranyi': |
|
X0 = self.params['biomass'].get('X0', X0_exp) |
|
elif self.model_type == 'gompertz' and self.biomass_model: |
|
|
|
|
|
params_list = [self.params['biomass'].get('Xm',1), self.params['biomass'].get('um',0.1), self.params['biomass'].get('lag',0)] |
|
X0_calc = self.biomass_model(0, *params_list) |
|
X0 = X0_calc if not np.isnan(X0_calc) else X0_exp |
|
elif self.model_type == 'moser' and self.biomass_model: |
|
|
|
|
|
params_list = [self.params['biomass'].get('Xm',1), self.params['biomass'].get('um',0.1), self.params['biomass'].get('Ks',0)] |
|
X0_calc = self.biomass_model(0, *params_list) |
|
X0 = X0_calc if not np.isnan(X0_calc) else X0_exp |
|
|
|
S0 = self.params.get('substrate', {}).get('so', S0_exp) |
|
P0 = self.params.get('product', {}).get('po', P0_exp) |
|
|
|
X0 = X0 if not np.isnan(X0) else 0.0 |
|
S0 = S0 if not np.isnan(S0) else 0.0 |
|
P0 = P0 if not np.isnan(P0) else 0.0 |
|
return [X0, S0, P0] |
|
|
|
def solve_differential_equations(self, time, biomass, substrate, product): |
|
if self.biomass_diff is None: |
|
print(f"ODE solving no está soportado para el modelo {self.model_type}. Se usarán resultados de curve_fit.") |
|
return None, None, None, time |
|
|
|
if 'biomass' not in self.params or not self.params['biomass']: |
|
print("No hay parámetros de biomasa, no se pueden resolver las EDO.") |
|
return None, None, None, time |
|
if time is None or len(time) == 0 : |
|
print("Tiempo no válido para resolver EDOs.") |
|
return None, None, None, np.array([]) |
|
|
|
|
|
|
|
if self.model_type == 'logistic': |
|
biomass_params_list_ode = [self.params['biomass']['Xo'], self.params['biomass']['Xm'], self.params['biomass']['um']] |
|
elif self.model_type == 'gompertz': |
|
biomass_params_list_ode = [self.params['biomass']['Xm'], self.params['biomass']['um'], self.params['biomass']['lag']] |
|
elif self.model_type == 'moser': |
|
biomass_params_list_ode = [self.params['biomass']['Xm'], self.params['biomass']['um'], self.params['biomass']['Ks']] |
|
|
|
else: |
|
print(f"Tipo de modelo de biomasa desconocido para EDO: {self.model_type}") |
|
return None, None, None, time |
|
|
|
substrate_params_list = [ |
|
self.params.get('substrate', {}).get('so', 0), |
|
self.params.get('substrate', {}).get('p', 0), |
|
self.params.get('substrate', {}).get('q', 0) |
|
] |
|
product_params_list = [ |
|
self.params.get('product', {}).get('po', 0), |
|
self.params.get('product', {}).get('alpha', 0), |
|
self.params.get('product', {}).get('beta', 0) |
|
] |
|
|
|
initial_conditions = self.get_initial_conditions(time, biomass, substrate, product) |
|
time_fine = self.generate_fine_time_grid(time) |
|
if len(time_fine) == 0: |
|
print("No se pudo generar la malla de tiempo fina.") |
|
return None, None, None, time |
|
|
|
try: |
|
sol = odeint(self.system, initial_conditions, time_fine, |
|
args=(biomass_params_list_ode, substrate_params_list, product_params_list, self.model_type), |
|
rtol=1e-6, atol=1e-6) |
|
except Exception as e: |
|
print(f"Error al resolver EDOs con odeint: {e}") |
|
try: |
|
print("Intentando con método 'lsoda'...") |
|
sol = odeint(self.system, initial_conditions, time_fine, |
|
args=(biomass_params_list_ode, substrate_params_list, product_params_list, self.model_type), |
|
rtol=1e-6, atol=1e-6, method='lsoda') |
|
except Exception as e_lsoda: |
|
print(f"Error al resolver EDOs con odeint (método lsoda): {e_lsoda}") |
|
return None, None, None, time_fine |
|
|
|
X = sol[:, 0] |
|
S = sol[:, 1] |
|
P = sol[:, 2] |
|
return X, S, P, time_fine |
|
|
|
def plot_results(self, time, biomass, substrate, product, |
|
y_pred_biomass_fit, y_pred_substrate_fit, y_pred_product_fit, |
|
biomass_std=None, substrate_std=None, product_std=None, |
|
experiment_name='', legend_position='best', params_position='upper right', |
|
show_legend=True, show_params=True, |
|
style='whitegrid', |
|
line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o', |
|
use_differential=False, axis_labels=None, |
|
show_error_bars=True, error_cap_size=3, error_line_width=1): |
|
|
|
|
|
y_pred_biomass, y_pred_substrate, y_pred_product = y_pred_biomass_fit, y_pred_substrate_fit, y_pred_product_fit |
|
|
|
if y_pred_biomass is None and not (use_differential and self.biomass_diff is not None): |
|
print(f"No se pudo ajustar biomasa para {experiment_name} con {self.model_type} y no se usan EDO. Omitiendo figura.") |
|
return None |
|
|
|
|
|
can_use_ode = use_differential and self.biomass_diff is not None and 'biomass' in self.params and self.params['biomass'] |
|
if use_differential and self.biomass_diff is None: |
|
print(f"Modelo {self.model_type} no soporta EDOs. Usando ajuste directo.") |
|
|
|
if axis_labels is None: axis_labels = {'x_label': 'Tiempo', 'biomass_label': 'Biomasa', 'substrate_label': 'Sustrato', 'product_label': 'Producto'} |
|
sns.set_style(style) |
|
time_to_plot = time |
|
|
|
if can_use_ode: |
|
X_ode, S_ode, P_ode, time_fine_ode = self.solve_differential_equations(time, biomass, substrate, product) |
|
if X_ode is not None: |
|
y_pred_biomass, y_pred_substrate, y_pred_product = X_ode, S_ode, P_ode |
|
time_to_plot = time_fine_ode |
|
else: |
|
print(f"Fallo al resolver EDOs para {experiment_name}, usando resultados de curve_fit si existen.") |
|
time_to_plot = self.generate_fine_time_grid(time) |
|
|
|
if y_pred_biomass_fit is not None and self.biomass_model and 'biomass' in self.params and self.params['biomass']: |
|
biomass_params_values = list(self.params['biomass'].values()) |
|
y_pred_biomass = self.biomass_model(time_to_plot, *biomass_params_values) |
|
if y_pred_substrate_fit is not None and 'substrate' in self.params and self.params['substrate']: |
|
substrate_params_values = list(self.params['substrate'].values()) |
|
y_pred_substrate = self.substrate(time_to_plot, *substrate_params_values, biomass_params_values) |
|
if y_pred_product_fit is not None and 'product' in self.params and self.params['product']: |
|
product_params_values = list(self.params['product'].values()) |
|
y_pred_product = self.product(time_to_plot, *product_params_values, biomass_params_values) |
|
|
|
else: |
|
time_to_plot = self.generate_fine_time_grid(time) |
|
if y_pred_biomass_fit is not None and self.biomass_model and 'biomass' in self.params and self.params['biomass']: |
|
biomass_params_values = list(self.params['biomass'].values()) |
|
y_pred_biomass = self.biomass_model(time_to_plot, *biomass_params_values) |
|
if y_pred_substrate_fit is not None and 'substrate' in self.params and self.params['substrate']: |
|
substrate_params_values = list(self.params['substrate'].values()) |
|
y_pred_substrate = self.substrate(time_to_plot, *substrate_params_values, biomass_params_values) |
|
else: |
|
y_pred_substrate = np.full_like(time_to_plot, np.nan) |
|
if y_pred_product_fit is not None and 'product' in self.params and self.params['product']: |
|
product_params_values = list(self.params['product'].values()) |
|
y_pred_product = self.product(time_to_plot, *product_params_values, biomass_params_values) |
|
else: |
|
y_pred_product = np.full_like(time_to_plot, np.nan) |
|
else: |
|
y_pred_biomass = np.full_like(time_to_plot, np.nan) |
|
y_pred_substrate = np.full_like(time_to_plot, np.nan) |
|
y_pred_product = np.full_like(time_to_plot, np.nan) |
|
|
|
|
|
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(10, 15)) |
|
fig.suptitle(f'{experiment_name} ({self.model_type.capitalize()})', fontsize=16) |
|
|
|
plots_config = [ |
|
(ax1, biomass, y_pred_biomass, biomass_std, axis_labels['biomass_label'], 'Modelo', self.params.get('biomass', {}), |
|
self.r2.get('biomass', np.nan), self.rmse.get('biomass', np.nan)), |
|
(ax2, substrate, y_pred_substrate, substrate_std, axis_labels['substrate_label'], 'Modelo', self.params.get('substrate', {}), |
|
self.r2.get('substrate', np.nan), self.rmse.get('substrate', np.nan)), |
|
(ax3, product, y_pred_product, product_std, axis_labels['product_label'], 'Modelo', self.params.get('product', {}), |
|
self.r2.get('product', np.nan), self.rmse.get('product', np.nan)) |
|
] |
|
|
|
for idx, (ax, data_exp, y_pred_model, data_std_exp, ylabel, model_name_legend, params_dict, r2_val, rmse_val) in enumerate(plots_config): |
|
if data_exp is not None and len(data_exp) > 0 and not np.all(np.isnan(data_exp)): |
|
if show_error_bars and data_std_exp is not None and len(data_std_exp) == len(data_exp) and not np.all(np.isnan(data_std_exp)): |
|
ax.errorbar( |
|
time, data_exp, yerr=data_std_exp, |
|
fmt=marker_style, color=point_color, |
|
label='Datos experimentales', |
|
capsize=error_cap_size, |
|
elinewidth=error_line_width, |
|
markeredgewidth=1 |
|
) |
|
else: |
|
ax.plot(time, data_exp, marker=marker_style, linestyle='', color=point_color, |
|
label='Datos experimentales') |
|
else: |
|
ax.text(0.5, 0.5, 'No hay datos experimentales para mostrar.', |
|
horizontalalignment='center', verticalalignment='center', |
|
transform=ax.transAxes, fontsize=10, color='gray') |
|
|
|
if y_pred_model is not None and len(y_pred_model) > 0 and not np.all(np.isnan(y_pred_model)): |
|
ax.plot(time_to_plot, y_pred_model, linestyle=line_style, color=line_color, label=model_name_legend) |
|
|
|
elif idx == 0 and (y_pred_biomass_fit is None and not can_use_ode): |
|
ax.text(0.5, 0.6, 'Modelo de biomasa no ajustado.', |
|
horizontalalignment='center', verticalalignment='center', |
|
transform=ax.transAxes, fontsize=10, color='red') |
|
elif (idx == 1 and y_pred_substrate_fit is None and not can_use_ode) or \ |
|
(idx == 2 and y_pred_product_fit is None and not can_use_ode) : |
|
if not ('biomass' in self.params and self.params['biomass']): |
|
ax.text(0.5, 0.4, 'Modelo no ajustado (depende de biomasa).', |
|
horizontalalignment='center', verticalalignment='center', |
|
transform=ax.transAxes, fontsize=10, color='orange') |
|
elif y_pred_model is None or np.all(np.isnan(y_pred_model)): |
|
ax.text(0.5, 0.4, 'Modelo no ajustado.', |
|
horizontalalignment='center', verticalalignment='center', |
|
transform=ax.transAxes, fontsize=10, color='orange') |
|
|
|
|
|
ax.set_xlabel(axis_labels['x_label']) |
|
ax.set_ylabel(ylabel) |
|
if show_legend: |
|
ax.legend(loc=legend_position) |
|
ax.set_title(f'{ylabel}') |
|
|
|
if show_params and params_dict and any(np.isfinite(v) for v in params_dict.values()): |
|
param_text_list = [] |
|
for k, v_param in params_dict.items(): |
|
param_text_list.append(f"{k} = {v_param:.3g}" if np.isfinite(v_param) else f"{k} = N/A") |
|
param_text = '\n'.join(param_text_list) |
|
|
|
r2_display = f"{r2_val:.3f}" if np.isfinite(r2_val) else "N/A" |
|
rmse_display = f"{rmse_val:.3f}" if np.isfinite(rmse_val) else "N/A" |
|
text = f"{param_text}\nR² = {r2_display}\nRMSE = {rmse_display}" |
|
|
|
if params_position == 'outside right': |
|
bbox_props = dict(boxstyle='round,pad=0.3', facecolor='wheat', alpha=0.5) |
|
fig.subplots_adjust(right=0.75) |
|
ax.annotate(text, xy=(1.05, 0.5), xycoords='axes fraction', |
|
xytext=(10,0), textcoords='offset points', |
|
verticalalignment='center', horizontalalignment='left', |
|
bbox=bbox_props) |
|
else: |
|
text_x, ha = (0.95, 'right') if 'right' in params_position else (0.05, 'left') |
|
text_y, va = (0.95, 'top') if 'upper' in params_position else (0.05, 'bottom') |
|
ax.text(text_x, text_y, text, transform=ax.transAxes, |
|
verticalalignment=va, horizontalalignment=ha, |
|
bbox={'boxstyle': 'round,pad=0.3', 'facecolor':'wheat', 'alpha':0.5}) |
|
elif show_params : |
|
ax.text(0.5, 0.3, 'Parámetros no disponibles.', |
|
horizontalalignment='center', verticalalignment='center', |
|
transform=ax.transAxes, fontsize=9, color='grey') |
|
|
|
|
|
plt.tight_layout(rect=[0, 0.03, 1, 0.95]) |
|
buf = io.BytesIO() |
|
fig.savefig(buf, format='png', bbox_inches='tight') |
|
buf.seek(0) |
|
image = Image.open(buf).convert("RGB") |
|
plt.close(fig) |
|
return image |
|
|
|
def plot_combined_results(self, time, biomass, substrate, product, |
|
y_pred_biomass_fit, y_pred_substrate_fit, y_pred_product_fit, |
|
biomass_std=None, substrate_std=None, product_std=None, |
|
experiment_name='', legend_position='best', params_position='upper right', |
|
show_legend=True, show_params=True, |
|
style='whitegrid', |
|
line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o', |
|
use_differential=False, axis_labels=None, |
|
show_error_bars=True, error_cap_size=3, error_line_width=1): |
|
|
|
y_pred_biomass, y_pred_substrate, y_pred_product = y_pred_biomass_fit, y_pred_substrate_fit, y_pred_product_fit |
|
|
|
if y_pred_biomass is None and not (use_differential and self.biomass_diff is not None): |
|
print(f"No se pudo ajustar biomasa para {experiment_name} con {self.model_type} (combinado). Omitiendo figura.") |
|
return None |
|
|
|
can_use_ode = use_differential and self.biomass_diff is not None and 'biomass' in self.params and self.params['biomass'] |
|
if use_differential and self.biomass_diff is None: |
|
print(f"Modelo {self.model_type} no soporta EDOs (combinado). Usando ajuste directo.") |
|
|
|
if axis_labels is None: axis_labels = {'x_label': 'Tiempo', 'biomass_label': 'Biomasa', 'substrate_label': 'Sustrato', 'product_label': 'Producto'} |
|
sns.set_style(style) |
|
time_to_plot = time |
|
|
|
if can_use_ode: |
|
X_ode, S_ode, P_ode, time_fine_ode = self.solve_differential_equations(time, biomass, substrate, product) |
|
if X_ode is not None: |
|
y_pred_biomass, y_pred_substrate, y_pred_product = X_ode, S_ode, P_ode |
|
time_to_plot = time_fine_ode |
|
else: |
|
print(f"Fallo al resolver EDOs para {experiment_name} (combinado), usando resultados de curve_fit.") |
|
time_to_plot = self.generate_fine_time_grid(time) |
|
if y_pred_biomass_fit is not None and self.biomass_model and 'biomass' in self.params and self.params['biomass']: |
|
biomass_params_values = list(self.params['biomass'].values()) |
|
y_pred_biomass = self.biomass_model(time_to_plot, *biomass_params_values) |
|
if y_pred_substrate_fit is not None and 'substrate' in self.params and self.params['substrate']: |
|
substrate_params_values = list(self.params['substrate'].values()) |
|
y_pred_substrate = self.substrate(time_to_plot, *substrate_params_values, biomass_params_values) |
|
if y_pred_product_fit is not None and 'product' in self.params and self.params['product']: |
|
product_params_values = list(self.params['product'].values()) |
|
y_pred_product = self.product(time_to_plot, *product_params_values, biomass_params_values) |
|
else: |
|
time_to_plot = self.generate_fine_time_grid(time) |
|
if y_pred_biomass_fit is not None and self.biomass_model and 'biomass' in self.params and self.params['biomass']: |
|
biomass_params_values = list(self.params['biomass'].values()) |
|
y_pred_biomass = self.biomass_model(time_to_plot, *biomass_params_values) |
|
if y_pred_substrate_fit is not None and 'substrate' in self.params and self.params['substrate']: |
|
substrate_params_values = list(self.params['substrate'].values()) |
|
y_pred_substrate = self.substrate(time_to_plot, *substrate_params_values, biomass_params_values) |
|
else: y_pred_substrate = np.full_like(time_to_plot, np.nan) |
|
if y_pred_product_fit is not None and 'product' in self.params and self.params['product']: |
|
product_params_values = list(self.params['product'].values()) |
|
y_pred_product = self.product(time_to_plot, *product_params_values, biomass_params_values) |
|
else: y_pred_product = np.full_like(time_to_plot, np.nan) |
|
else: |
|
y_pred_biomass = np.full_like(time_to_plot, np.nan) |
|
y_pred_substrate = np.full_like(time_to_plot, np.nan) |
|
y_pred_product = np.full_like(time_to_plot, np.nan) |
|
|
|
fig, ax1 = plt.subplots(figsize=(12, 7)) |
|
fig.suptitle(f'{experiment_name} ({self.model_type.capitalize()})', fontsize=16) |
|
|
|
|
|
colors = {'Biomasa': 'blue', 'Sustrato': 'green', 'Producto': 'red'} |
|
data_colors = {'Biomasa': 'darkblue', 'Sustrato': 'darkgreen', 'Producto': 'darkred'} |
|
model_colors = {'Biomasa': 'cornflowerblue', 'Sustrato': 'limegreen', 'Producto': 'salmon'} |
|
|
|
ax1.set_xlabel(axis_labels['x_label']) |
|
ax1.set_ylabel(axis_labels['biomass_label'], color=colors['Biomasa']) |
|
if biomass is not None and len(biomass) > 0 and not np.all(np.isnan(biomass)): |
|
if show_error_bars and biomass_std is not None and len(biomass_std) == len(biomass) and not np.all(np.isnan(biomass_std)): |
|
ax1.errorbar( |
|
time, biomass, yerr=biomass_std, |
|
fmt=marker_style, color=data_colors['Biomasa'], |
|
label=f'{axis_labels["biomass_label"]} (Datos)', |
|
capsize=error_cap_size, elinewidth=error_line_width, markersize=5 |
|
) |
|
else: |
|
ax1.plot(time, biomass, marker=marker_style, linestyle='', color=data_colors['Biomasa'], |
|
label=f'{axis_labels["biomass_label"]} (Datos)', markersize=5) |
|
if y_pred_biomass is not None and len(y_pred_biomass) > 0 and not np.all(np.isnan(y_pred_biomass)): |
|
ax1.plot(time_to_plot, y_pred_biomass, linestyle=line_style, color=model_colors['Biomasa'], |
|
label=f'{axis_labels["biomass_label"]} (Modelo)') |
|
ax1.tick_params(axis='y', labelcolor=colors['Biomasa']) |
|
|
|
ax2 = ax1.twinx() |
|
ax2.set_ylabel(axis_labels['substrate_label'], color=colors['Sustrato']) |
|
if substrate is not None and len(substrate) > 0 and not np.all(np.isnan(substrate)): |
|
if show_error_bars and substrate_std is not None and len(substrate_std) == len(substrate) and not np.all(np.isnan(substrate_std)): |
|
ax2.errorbar( |
|
time, substrate, yerr=substrate_std, |
|
fmt=marker_style, color=data_colors['Sustrato'], |
|
label=f'{axis_labels["substrate_label"]} (Datos)', |
|
capsize=error_cap_size, elinewidth=error_line_width, markersize=5 |
|
) |
|
else: |
|
ax2.plot(time, substrate, marker=marker_style, linestyle='', color=data_colors['Sustrato'], |
|
label=f'{axis_labels["substrate_label"]} (Datos)', markersize=5) |
|
if y_pred_substrate is not None and len(y_pred_substrate) > 0 and not np.all(np.isnan(y_pred_substrate)): |
|
ax2.plot(time_to_plot, y_pred_substrate, linestyle=line_style, color=model_colors['Sustrato'], |
|
label=f'{axis_labels["substrate_label"]} (Modelo)') |
|
ax2.tick_params(axis='y', labelcolor=colors['Sustrato']) |
|
|
|
ax3 = ax1.twinx() |
|
ax3.spines["right"].set_position(("axes", 1.15)) |
|
ax3.set_frame_on(True); ax3.patch.set_visible(False) |
|
ax3.set_ylabel(axis_labels['product_label'], color=colors['Producto']) |
|
if product is not None and len(product) > 0 and not np.all(np.isnan(product)): |
|
if show_error_bars and product_std is not None and len(product_std) == len(product) and not np.all(np.isnan(product_std)): |
|
ax3.errorbar( |
|
time, product, yerr=product_std, |
|
fmt=marker_style, color=data_colors['Producto'], |
|
label=f'{axis_labels["product_label"]} (Datos)', |
|
capsize=error_cap_size, elinewidth=error_line_width, markersize=5 |
|
) |
|
else: |
|
ax3.plot(time, product, marker=marker_style, linestyle='', color=data_colors['Producto'], |
|
label=f'{axis_labels["product_label"]} (Datos)', markersize=5) |
|
if y_pred_product is not None and len(y_pred_product) > 0 and not np.all(np.isnan(y_pred_product)): |
|
ax3.plot(time_to_plot, y_pred_product, linestyle=line_style, color=model_colors['Producto'], |
|
label=f'{axis_labels["product_label"]} (Modelo)') |
|
ax3.tick_params(axis='y', labelcolor=colors['Producto']) |
|
|
|
lines_labels_collect = [] |
|
for ax_current in [ax1, ax2, ax3]: |
|
h, l = ax_current.get_legend_handles_labels() |
|
if h: lines_labels_collect.append((h,l)) |
|
|
|
if lines_labels_collect: |
|
lines, labels = [sum(lol, []) for lol in zip(*[(h,l) for h,l in lines_labels_collect])] |
|
unique_labels_dict = dict(zip(labels, lines)) |
|
if show_legend: ax1.legend(unique_labels_dict.values(), unique_labels_dict.keys(), loc=legend_position) |
|
|
|
if show_params: |
|
texts_to_display = [] |
|
param_categories = [ |
|
(axis_labels['biomass_label'], self.params.get('biomass', {}), self.r2.get('biomass', np.nan), self.rmse.get('biomass', np.nan)), |
|
(axis_labels['substrate_label'], self.params.get('substrate', {}), self.r2.get('substrate', np.nan), self.rmse.get('substrate', np.nan)), |
|
(axis_labels['product_label'], self.params.get('product', {}), self.r2.get('product', np.nan), self.rmse.get('product', np.nan)) |
|
] |
|
for label, params_dict, r2_val, rmse_val in param_categories: |
|
if params_dict and any(np.isfinite(v) for v in params_dict.values()): |
|
param_text_list = [f" {k} = {v_par:.3g}" if np.isfinite(v_par) else f" {k} = N/A" for k,v_par in params_dict.items()] |
|
param_text = '\n'.join(param_text_list) |
|
r2_display = f"{r2_val:.3f}" if np.isfinite(r2_val) else "N/A" |
|
rmse_display = f"{rmse_val:.3f}" if np.isfinite(rmse_val) else "N/A" |
|
texts_to_display.append(f"{label}:\n{param_text}\n R² = {r2_display}\n RMSE = {rmse_display}") |
|
elif params_dict: texts_to_display.append(f"{label}:\n Parámetros no válidos o N/A") |
|
total_text = "\n\n".join(texts_to_display) |
|
if total_text: |
|
if params_position == 'outside right': |
|
fig.subplots_adjust(right=0.70) |
|
fig.text(0.72, 0.5, total_text, transform=fig.transFigure, |
|
verticalalignment='center', horizontalalignment='left', |
|
bbox=dict(boxstyle='round,pad=0.3', facecolor='wheat', alpha=0.7), fontsize=8) |
|
else: |
|
text_x, ha = (0.95, 'right') if 'right' in params_position else (0.05, 'left') |
|
text_y, va = (0.95, 'top') if 'upper' in params_position else (0.05, 'bottom') |
|
ax1.text(text_x, text_y, total_text, transform=ax1.transAxes, |
|
verticalalignment=va, horizontalalignment=ha, |
|
bbox=dict(boxstyle='round,pad=0.3', facecolor='wheat', alpha=0.7), fontsize=8) |
|
|
|
plt.tight_layout(rect=[0, 0.03, 1, 0.95]) |
|
if params_position == 'outside right': fig.subplots_adjust(right=0.70) |
|
buf = io.BytesIO(); fig.savefig(buf, format='png', bbox_inches='tight'); buf.seek(0) |
|
image = Image.open(buf).convert("RGB"); plt.close(fig) |
|
return image |
|
|
|
|
|
def process_all_data(file, legend_position, params_position, model_types_selected, experiment_names_str, |
|
lower_bounds_str, upper_bounds_str, |
|
mode, style, line_color, point_color, line_style, marker_style, |
|
show_legend, show_params, use_differential, maxfev_val, |
|
axis_labels_dict, |
|
show_error_bars, error_cap_size, error_line_width): |
|
|
|
|
|
if file is None: return [], pd.DataFrame(), "Por favor, sube un archivo Excel." |
|
try: |
|
xls = pd.ExcelFile(file.name if hasattr(file, 'name') else file) |
|
sheet_names = xls.sheet_names |
|
if not sheet_names: return [], pd.DataFrame(), "El archivo Excel está vacío." |
|
except Exception as e: return [], pd.DataFrame(), f"Error al leer el archivo Excel: {e}" |
|
|
|
figures = [] |
|
comparison_data = [] |
|
experiment_names_list = experiment_names_str.strip().split('\n') if experiment_names_str.strip() else [] |
|
all_plot_messages = [] |
|
|
|
for sheet_name_idx, sheet_name in enumerate(sheet_names): |
|
current_experiment_name_base = (experiment_names_list[sheet_name_idx] |
|
if sheet_name_idx < len(experiment_names_list) and experiment_names_list[sheet_name_idx] |
|
else f"Hoja '{sheet_name}'") |
|
try: |
|
df = pd.read_excel(xls, sheet_name=sheet_name, header=[0, 1]) |
|
if df.empty: all_plot_messages.append(f"Hoja '{sheet_name}' vacía."); continue |
|
if not any(col_level2 == 'Tiempo' for _, col_level2 in df.columns): |
|
all_plot_messages.append(f"Hoja '{sheet_name}' sin 'Tiempo'."); continue |
|
except Exception as e: |
|
all_plot_messages.append(f"Error leyendo hoja '{sheet_name}': {e}."); continue |
|
|
|
model_dummy_for_sheet = BioprocessModel() |
|
try: |
|
model_dummy_for_sheet.process_data(df) |
|
except ValueError as e: |
|
all_plot_messages.append(f"Error procesando datos de '{sheet_name}': {e}."); continue |
|
|
|
|
|
|
|
|
|
|
|
if mode == 'independent': |
|
|
|
|
|
grouped_cols = df.columns.get_level_values(0).unique() |
|
for exp_idx, exp_col_name in enumerate(grouped_cols): |
|
current_experiment_name = f"{current_experiment_name_base} - Exp {exp_idx + 1} ({exp_col_name})" |
|
exp_df_slice = df[exp_col_name] |
|
|
|
try: |
|
time_exp = exp_df_slice['Tiempo'].dropna().astype(float).values |
|
biomass_exp = exp_df_slice['Biomasa'].dropna().astype(float).values if 'Biomasa' in exp_df_slice else np.array([]) |
|
substrate_exp = exp_df_slice['Sustrato'].dropna().astype(float).values if 'Sustrato' in exp_df_slice else np.array([]) |
|
product_exp = exp_df_slice['Producto'].dropna().astype(float).values if 'Producto' in exp_df_slice else np.array([]) |
|
|
|
if len(time_exp) == 0: all_plot_messages.append(f"Sin datos de tiempo para {current_experiment_name}."); continue |
|
if len(biomass_exp) == 0: |
|
all_plot_messages.append(f"Sin datos de biomasa para {current_experiment_name}.") |
|
for mt in model_types_selected: comparison_data.append({'Experimento': current_experiment_name, 'Modelo': mt.capitalize(), 'R² Biomasa': np.nan, 'RMSE Biomasa': np.nan}) |
|
continue |
|
|
|
min_len = min(len(time_exp), len(biomass_exp) if len(biomass_exp)>0 else len(time_exp), |
|
len(substrate_exp) if len(substrate_exp)>0 else len(time_exp), |
|
len(product_exp) if len(product_exp)>0 else len(time_exp)) |
|
time_exp = time_exp[:min_len] |
|
if len(biomass_exp)>0: biomass_exp = biomass_exp[:min_len] |
|
if len(substrate_exp)>0: substrate_exp = substrate_exp[:min_len] |
|
if len(product_exp)>0: product_exp = product_exp[:min_len] |
|
|
|
|
|
except KeyError as e: all_plot_messages.append(f"Faltan columnas en '{current_experiment_name}': {e}."); continue |
|
except Exception as e_data: all_plot_messages.append(f"Error extrayendo datos para '{current_experiment_name}': {e_data}."); continue |
|
|
|
biomass_std_exp, substrate_std_exp, product_std_exp = None, None, None |
|
|
|
for model_type_iter in model_types_selected: |
|
model_instance = BioprocessModel(model_type=model_type_iter, maxfev=maxfev_val) |
|
model_instance.fit_model() |
|
y_pred_biomass = model_instance.fit_biomass(time_exp, biomass_exp) |
|
y_pred_substrate, y_pred_product = None, None |
|
if y_pred_biomass is not None and model_instance.params.get('biomass'): |
|
if len(substrate_exp) > 0: y_pred_substrate = model_instance.fit_substrate(time_exp, substrate_exp, model_instance.params['biomass']) |
|
if len(product_exp) > 0: y_pred_product = model_instance.fit_product(time_exp, product_exp, model_instance.params['biomass']) |
|
else: all_plot_messages.append(f"Ajuste biomasa falló: {current_experiment_name}, {model_type_iter}.") |
|
|
|
comparison_data.append({ |
|
'Experimento': current_experiment_name, 'Modelo': model_type_iter.capitalize(), |
|
'R² Biomasa': model_instance.r2.get('biomass', np.nan), 'RMSE Biomasa': model_instance.rmse.get('biomass', np.nan), |
|
'R² Sustrato': model_instance.r2.get('substrate', np.nan), 'RMSE Sustrato': model_instance.rmse.get('substrate', np.nan), |
|
'R² Producto': model_instance.r2.get('product', np.nan), 'RMSE Producto': model_instance.rmse.get('product', np.nan) |
|
}) |
|
fig = model_instance.plot_results( |
|
time_exp, biomass_exp, substrate_exp, product_exp, |
|
y_pred_biomass, y_pred_substrate, y_pred_product, |
|
biomass_std_exp, substrate_std_exp, product_std_exp, |
|
current_experiment_name, legend_position, params_position, |
|
show_legend, show_params, style, line_color, point_color, line_style, marker_style, |
|
use_differential, axis_labels_dict, |
|
show_error_bars, error_cap_size, error_line_width |
|
) |
|
if fig: figures.append(fig) |
|
|
|
elif mode in ['average', 'combinado']: |
|
|
|
current_experiment_name = f"{current_experiment_name_base} - Promedio" |
|
time_avg = model_dummy_for_sheet.time |
|
|
|
|
|
biomass_avg = model_dummy_for_sheet.dataxp[-1] if model_dummy_for_sheet.dataxp and len(model_dummy_for_sheet.dataxp[-1]) > 0 else np.array([]) |
|
substrate_avg = model_dummy_for_sheet.datasp[-1] if model_dummy_for_sheet.datasp and len(model_dummy_for_sheet.datasp[-1]) > 0 else np.array([]) |
|
product_avg = model_dummy_for_sheet.datapp[-1] if model_dummy_for_sheet.datapp and len(model_dummy_for_sheet.datapp[-1]) > 0 else np.array([]) |
|
|
|
biomass_std_avg = model_dummy_for_sheet.datax_std[-1] if model_dummy_for_sheet.datax_std and len(model_dummy_for_sheet.datax_std[-1]) == len(biomass_avg) else None |
|
substrate_std_avg = model_dummy_for_sheet.datas_std[-1] if model_dummy_for_sheet.datas_std and len(model_dummy_for_sheet.datas_std[-1]) == len(substrate_avg) else None |
|
product_std_avg = model_dummy_for_sheet.datap_std[-1] if model_dummy_for_sheet.datap_std and len(model_dummy_for_sheet.datap_std[-1]) == len(product_avg) else None |
|
|
|
if time_avg is None or len(time_avg) == 0: all_plot_messages.append(f"Sin datos de tiempo promedio para '{sheet_name}'."); continue |
|
if len(biomass_avg) == 0: |
|
all_plot_messages.append(f"Sin datos de biomasa promedio para '{sheet_name}'.") |
|
for mt in model_types_selected: comparison_data.append({'Experimento': current_experiment_name, 'Modelo': mt.capitalize(), 'R² Biomasa': np.nan, 'RMSE Biomasa': np.nan}) |
|
continue |
|
|
|
for model_type_iter in model_types_selected: |
|
model_instance = BioprocessModel(model_type=model_type_iter, maxfev=maxfev_val) |
|
model_instance.fit_model() |
|
y_pred_biomass = model_instance.fit_biomass(time_avg, biomass_avg) |
|
y_pred_substrate, y_pred_product = None, None |
|
if y_pred_biomass is not None and model_instance.params.get('biomass'): |
|
if len(substrate_avg) > 0: y_pred_substrate = model_instance.fit_substrate(time_avg, substrate_avg, model_instance.params['biomass']) |
|
if len(product_avg) > 0: y_pred_product = model_instance.fit_product(time_avg, product_avg, model_instance.params['biomass']) |
|
else: all_plot_messages.append(f"Ajuste biomasa promedio falló: {current_experiment_name}, {model_type_iter}.") |
|
|
|
comparison_data.append({ |
|
'Experimento': current_experiment_name, 'Modelo': model_type_iter.capitalize(), |
|
'R² Biomasa': model_instance.r2.get('biomass', np.nan), 'RMSE Biomasa': model_instance.rmse.get('biomass', np.nan), |
|
'R² Sustrato': model_instance.r2.get('substrate', np.nan), 'RMSE Sustrato': model_instance.rmse.get('substrate', np.nan), |
|
'R² Producto': model_instance.r2.get('product', np.nan), 'RMSE Producto': model_instance.rmse.get('product', np.nan) |
|
}) |
|
plot_func = model_instance.plot_combined_results if mode == 'combinado' else model_instance.plot_results |
|
fig = plot_func( |
|
time_avg, biomass_avg, substrate_avg, product_avg, |
|
y_pred_biomass, y_pred_substrate, y_pred_product, |
|
biomass_std_avg, substrate_std_avg, product_std_avg, |
|
current_experiment_name, legend_position, params_position, |
|
show_legend, show_params, style, line_color, point_color, line_style, marker_style, |
|
use_differential, axis_labels_dict, |
|
show_error_bars, error_cap_size, error_line_width |
|
) |
|
if fig: figures.append(fig) |
|
|
|
comparison_df = pd.DataFrame(comparison_data) |
|
if not comparison_df.empty: |
|
for col in ['R² Biomasa', 'RMSE Biomasa', 'R² Sustrato', 'RMSE Sustrato', 'R² Producto', 'RMSE Producto']: |
|
if col in comparison_df.columns: comparison_df[col] = pd.to_numeric(comparison_df[col], errors='coerce') |
|
comparison_df_sorted = comparison_df.sort_values( |
|
by=['Experimento', 'Modelo', 'R² Biomasa', 'R² Sustrato', 'R² Producto', 'RMSE Biomasa', 'RMSE Sustrato', 'RMSE Producto'], |
|
ascending=[True, True, False, False, False, True, True, True] |
|
).reset_index(drop=True) |
|
else: |
|
comparison_df_sorted = pd.DataFrame(columns=[ |
|
'Experimento', 'Modelo', 'R² Biomasa', 'RMSE Biomasa', |
|
'R² Sustrato', 'RMSE Sustrato', 'R² Producto', 'RMSE Producto' |
|
]) |
|
|
|
final_message = "Procesamiento completado." |
|
if all_plot_messages: final_message += " Mensajes:\n" + "\n".join(all_plot_messages) |
|
if not figures and not comparison_df_sorted.empty: final_message += "\nNo se generaron gráficos, pero hay datos en la tabla." |
|
elif not figures and comparison_df_sorted.empty: final_message += "\nNo se generaron gráficos ni datos para la tabla." |
|
return figures, comparison_df_sorted, final_message |
|
|
|
|
|
MODEL_CHOICES = [ |
|
("Logistic (3-parám)", "logistic"), |
|
("Gompertz (3-parám)", "gompertz"), |
|
("Moser (3-parám)", "moser"), |
|
("Baranyi (4-parám)", "baranyi") |
|
|
|
] |
|
|
|
def create_interface(): |
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown("# Modelos Cinéticos de Bioprocesos") |
|
|
|
gr.Markdown(r""" |
|
Análisis y visualización de datos de bioprocesos utilizando modelos cinéticos como Logístico, Gompertz y Moser para el crecimiento de biomasa, |
|
y el modelo de Luedeking-Piret para el consumo de sustrato y la formación de producto. |
|
Nuevos modelos como Baranyi (4 parámetros) han sido añadidos. |
|
|
|
**Instrucciones:** |
|
1. Sube un archivo Excel. El archivo debe tener una estructura de MultiIndex en las columnas: |
|
- Nivel 0: Nombre del experimento/tratamiento (ej: "Control", "Tratamiento A") |
|
- Nivel 1: Tipo de dato ("Tiempo", "Biomasa", "Sustrato", "Producto") |
|
- Si hay réplicas, deben estar como columnas separadas bajo el mismo nombre de experimento (Nivel 0) y tipo de dato (Nivel 1). |
|
Ejemplo: (Control, Biomasa, Rep1), (Control, Biomasa, Rep2). El código promediará estas réplicas para los modos "average" y "combinado". |
|
Para el modo "independent", se asume una sola serie de datos por (Experimento, TipoDato). |
|
2. Selecciona el/los tipo(s) de modelo(s) de biomasa a ajustar. Los modelos están agrupados por el número de parámetros. |
|
3. Elige el modo de análisis: |
|
- `independent`: Analiza cada experimento (columna de Nivel 0) individualmente. |
|
- `average`: Promedia los datos de todos los experimentos dentro de una hoja y ajusta los modelos a estos promedios. Se grafica en subplots separados. |
|
- `combinado`: Similar a `average`, pero grafica Biomasa, Sustrato y Producto en un solo gráfico con múltiples ejes Y. |
|
4. Configura las opciones de graficación (leyenda, parámetros, estilos, colores, etc.). |
|
5. (Opcional) Personaliza los nombres de los experimentos y los títulos de los ejes. |
|
6. Haz clic en "Simular" para generar los gráficos y la tabla comparativa. |
|
7. Puedes exportar la tabla de resultados a Excel o CSV. |
|
""") |
|
gr.Markdown(r""" |
|
## Ecuaciones Diferenciales Utilizadas (Simplificado) |
|
|
|
**Biomasa:** |
|
|
|
- Logístico (3p: $X_0, X_m, \mu_m$): |
|
$$ X(t) = \frac{X_0 X_m e^{\mu_m t}}{X_m - X_0 + X_0 e^{\mu_m t}} \quad \text{o} \quad \frac{dX}{dt} = \mu_m X\left(1 - \frac{X}{X_m}\right) $$ |
|
|
|
- Gompertz (3p: $X_m, \mu_m, \lambda$): |
|
$$ X(t) = X_m \exp\left(-\exp\left(\frac{\mu_m e}{X_m}(\lambda-t)+1\right)\right) \quad \text{o} \quad \frac{dX}{dt} = \mu_m X \ln\left(\frac{X_m}{X}\right) \text{ (forma alternativa)} $$ |
|
|
|
- Moser (3p: $X_m, \mu_m, K_s$ - forma simplificada): |
|
$$ X(t)=X_m(1-e^{-\mu_m(t-K_s)}) \quad \text{o} \quad \frac{dX}{dt}=\mu_m(X_m - X) $$ |
|
|
|
- Baranyi (4p: $X_0, X_m, \mu_m, \lambda$): |
|
$$ \ln X(t) = \ln X_0 + \mu_m A(t) - \ln\left(1 + \frac{e^{\mu_m A(t)}-1}{X_m/X_0}\right) $$ |
|
$$ A(t) = t + \frac{1}{\mu_m} \ln(e^{-\mu_m t} + e^{-\mu_m \lambda} - e^{-\mu_m(t+\lambda)}) $$ |
|
(Ecuación diferencial compleja, no usada para ODE en esta versión) |
|
|
|
**Sustrato y Producto (Luedeking-Piret):** |
|
$$ \frac{dS}{dt} = -p \frac{dX}{dt} - q X \quad ; \quad \frac{dP}{dt} = \alpha \frac{dX}{dt} + \beta X $$ |
|
Parámetros: $X_m, \mu_m, X_0, \lambda (\text{lag}), K_s, p, q, \alpha, \beta$. |
|
""") |
|
|
|
|
|
with gr.Row(): |
|
file_input = gr.File(label="Subir archivo Excel (.xlsx)", file_types=['.xlsx']) |
|
mode = gr.Radio(["independent", "average", "combinado"], label="Modo de Análisis", value="independent", |
|
info="Independent: cada experimento. Average/Combinado: promedio de la hoja.") |
|
|
|
with gr.Accordion("Configuración de Modelos y Simulación", open=True): |
|
model_types_selected_ui = gr.CheckboxGroup( |
|
choices=MODEL_CHOICES, |
|
label="Tipo(s) de Modelo de Biomasa", |
|
value=["logistic"] |
|
) |
|
use_differential_ui = gr.Checkbox(label="Usar Ecuaciones Diferenciales para Graficar (experimental)", value=False, |
|
info="Si se marca, las curvas se generan resolviendo las EDOs (si el modelo lo soporta). Si no, por ajuste directo.") |
|
maxfev_input_ui = gr.Number(label="maxfev (Máx. evaluaciones para el ajuste)", value=50000, minimum=1000, step=1000) |
|
experiment_names_str_ui = gr.Textbox( |
|
label="Nombres de los experimentos/hojas (uno por línea, opcional)", |
|
placeholder="Nombre para Hoja 1\nNombre para Hoja 2\n...", |
|
lines=3, |
|
info="Si se deja vacío, se usarán los nombres de las hojas o 'Exp X'." |
|
) |
|
|
|
with gr.Accordion("Configuración de Gráficos", open=False): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
legend_position_ui = gr.Radio(choices=["upper left", "upper right", "lower left", "lower right", "best"], label="Posición de Leyenda", value="best") |
|
show_legend_ui = gr.Checkbox(label="Mostrar Leyenda", value=True) |
|
with gr.Column(scale=1): |
|
params_position_ui = gr.Radio(choices=["upper left", "upper right", "lower left", "lower right", "outside right"], label="Posición de Parámetros", value="upper right") |
|
show_params_ui = gr.Checkbox(label="Mostrar Parámetros", value=True) |
|
with gr.Row(): |
|
style_dropdown_ui = gr.Dropdown(choices=['white', 'dark', 'whitegrid', 'darkgrid', 'ticks'], label="Estilo de Gráfico (Seaborn)", value='whitegrid') |
|
line_color_picker_ui = gr.ColorPicker(label="Color de Línea (Modelo)", value='#0072B2') |
|
point_color_picker_ui = gr.ColorPicker(label="Color de Puntos (Datos)", value='#D55E00') |
|
with gr.Row(): |
|
line_style_dropdown_ui = gr.Dropdown(choices=['-', '--', '-.', ':'], label="Estilo de Línea", value='-') |
|
marker_style_dropdown_ui = gr.Dropdown(choices=['o', 's', '^', 'v', 'D', 'x', '+', '*'], label="Estilo de Marcador (Puntos)", value='o') |
|
with gr.Row(): |
|
x_axis_label_input_ui = gr.Textbox(label="Título Eje X", value="Tiempo (h)", placeholder="Tiempo (unidades)") |
|
biomass_axis_label_input_ui = gr.Textbox(label="Título Eje Y (Biomasa)", value="Biomasa (g/L)", placeholder="Biomasa (unidades)") |
|
with gr.Row(): |
|
substrate_axis_label_input_ui = gr.Textbox(label="Título Eje Y (Sustrato)", value="Sustrato (g/L)", placeholder="Sustrato (unidades)") |
|
product_axis_label_input_ui = gr.Textbox(label="Título Eje Y (Producto)", value="Producto (g/L)", placeholder="Producto (unidades)") |
|
with gr.Row(): |
|
show_error_bars_ui = gr.Checkbox(label="Mostrar barras de error", value=True) |
|
error_cap_size_ui = gr.Slider(label="Tamaño de tapa de barras de error", minimum=1, maximum=10, step=1, value=3) |
|
error_line_width_ui = gr.Slider(label="Grosor de línea de error", minimum=0.5, maximum=5, step=0.5, value=1.0) |
|
|
|
with gr.Accordion("Configuración Avanzada de Ajuste (No implementado aún)", open=False): |
|
with gr.Row(): |
|
lower_bounds_str_ui = gr.Textbox(label="Lower Bounds (no usado actualmente)", lines=3) |
|
upper_bounds_str_ui = gr.Textbox(label="Upper Bounds (no usado actualmente)", lines=3) |
|
|
|
simulate_btn = gr.Button("Simular y Graficar", variant="primary") |
|
status_message_ui = gr.Textbox(label="Estado del Procesamiento", interactive=False) |
|
output_gallery_ui = gr.Gallery(label="Resultados Gráficos", columns=[2,1], height='auto', object_fit="contain") |
|
output_table_ui = gr.Dataframe( |
|
label="Tabla Comparativa de Modelos", |
|
headers=["Experimento", "Modelo", "R² Biomasa", "RMSE Biomasa", |
|
"R² Sustrato", "RMSE Sustrato", "R² Producto", "RMSE Producto"], |
|
interactive=False, wrap=True |
|
) |
|
state_df_ui = gr.State(pd.DataFrame()) |
|
|
|
def run_simulation_interface(file, legend_pos, params_pos, models_sel, analysis_mode, exp_names, |
|
low_bounds, up_bounds, plot_style, |
|
line_col, point_col, line_sty, marker_sty, |
|
show_leg, show_par, use_diff, maxfev, |
|
x_label, biomass_label, substrate_label, product_label, |
|
show_error_bars_arg, error_cap_size_arg, error_line_width_arg): |
|
if file is None: return [], pd.DataFrame(), "Error: Por favor, sube un archivo Excel.", pd.DataFrame() |
|
axis_labels = { |
|
'x_label': x_label if x_label else 'Tiempo', |
|
'biomass_label': biomass_label if biomass_label else 'Biomasa', |
|
'substrate_label': substrate_label if substrate_label else 'Sustrato', |
|
'product_label': product_label if product_label else 'Producto' |
|
} |
|
if not models_sel: return [], pd.DataFrame(), "Error: Por favor, selecciona al menos un modelo.", pd.DataFrame() |
|
|
|
figures, comparison_df, message = process_all_data( |
|
file, legend_pos, params_pos, models_sel, exp_names, |
|
low_bounds, up_bounds, analysis_mode, plot_style, |
|
line_col, point_col, line_sty, marker_sty, |
|
show_leg, show_par, use_diff, int(maxfev), |
|
axis_labels, show_error_bars_arg, error_cap_size_arg, error_line_width_arg |
|
) |
|
return figures, comparison_df, message, comparison_df |
|
|
|
simulate_btn.click( |
|
fn=run_simulation_interface, |
|
inputs=[ |
|
file_input, legend_position_ui, params_position_ui, model_types_selected_ui, mode, experiment_names_str_ui, |
|
lower_bounds_str_ui, upper_bounds_str_ui, style_dropdown_ui, |
|
line_color_picker_ui, point_color_picker_ui, line_style_dropdown_ui, marker_style_dropdown_ui, |
|
show_legend_ui, show_params_ui, use_differential_ui, maxfev_input_ui, |
|
x_axis_label_input_ui, biomass_axis_label_input_ui, substrate_axis_label_input_ui, product_axis_label_input_ui, |
|
show_error_bars_ui, error_cap_size_ui, error_line_width_ui |
|
], |
|
outputs=[output_gallery_ui, output_table_ui, status_message_ui, state_df_ui] |
|
) |
|
|
|
with gr.Row(): |
|
export_excel_btn = gr.Button("Exportar Tabla a Excel") |
|
export_csv_btn = gr.Button("Exportar Tabla a CSV") |
|
|
|
download_file_output_ui = gr.File(label="Descargar archivo", interactive=False) |
|
|
|
def export_excel_interface(df_to_export): |
|
if df_to_export is None or df_to_export.empty: |
|
with tempfile.NamedTemporaryFile(suffix=".txt", delete=False) as tmp: tmp.write(b"No hay datos para exportar."); return tmp.name |
|
try: |
|
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False, mode='w+b') as tmp: |
|
df_to_export.to_excel(tmp.name, index=False); return tmp.name |
|
except Exception as e: |
|
with tempfile.NamedTemporaryFile(suffix=".txt", delete=False) as tmp: tmp.write(f"Error al exportar a Excel: {e}".encode()); return tmp.name |
|
|
|
export_excel_btn.click(fn=export_excel_interface, inputs=state_df_ui, outputs=download_file_output_ui) |
|
|
|
def export_csv_interface(df_to_export): |
|
if df_to_export is None or df_to_export.empty: |
|
with tempfile.NamedTemporaryFile(suffix=".txt", delete=False) as tmp: tmp.write(b"No hay datos para exportar."); return tmp.name |
|
try: |
|
with tempfile.NamedTemporaryFile(suffix=".csv", delete=False, mode='w', encoding='utf-8') as tmp: |
|
df_to_export.to_csv(tmp.name, index=False); return tmp.name |
|
except Exception as e: |
|
with tempfile.NamedTemporaryFile(suffix=".txt", delete=False) as tmp: tmp.write(f"Error al exportar a CSV: {e}".encode()); return tmp.name |
|
|
|
export_csv_btn.click(fn=export_csv_interface, inputs=state_df_ui, outputs=download_file_output_ui) |
|
|
|
gr.Examples( |
|
examples=[ |
|
[None, "best", "upper right", ["logistic", "baranyi"], "independent", "Exp A\nExp B", "", "", "whitegrid", "#0072B2", "#D55E00", "-", "o", True, True, False, 50000, "Tiempo (días)", "Células (millones/mL)", "Glucosa (mM)", "Anticuerpo (mg/L)", True, 3, 1.0] |
|
], |
|
inputs=[ |
|
file_input, legend_position_ui, params_position_ui, model_types_selected_ui, mode, experiment_names_str_ui, |
|
lower_bounds_str_ui, upper_bounds_str_ui, style_dropdown_ui, |
|
line_color_picker_ui, point_color_picker_ui, line_style_dropdown_ui, marker_style_dropdown_ui, |
|
show_legend_ui, show_params_ui, use_differential_ui, maxfev_input_ui, |
|
x_axis_label_input_ui, biomass_axis_label_input_ui, substrate_axis_label_input_ui, product_axis_label_input_ui, |
|
show_error_bars_ui, error_cap_size_ui, error_line_width_ui |
|
], |
|
label="Ejemplo de Configuración (subir archivo manualmente)" |
|
) |
|
return demo |
|
|
|
if __name__ == '__main__': |
|
demo_instance = create_interface() |
|
demo_instance.launch(share=True) |