Spaces:
Sleeping
Sleeping
File size: 19,479 Bytes
d1eb779 11f0136 631a418 f45845d 631a418 97fec7a 631a418 f45845d af1d89d f45845d 2437f5f af1d89d 2437f5f 9b58814 f45845d d1eb779 11f0136 2437f5f 9b58814 11f0136 af1d89d 9b58814 11f0136 9b58814 af1d89d 9b58814 af1d89d 11f0136 af1d89d 11f0136 af1d89d 11f0136 9b58814 af1d89d 9b58814 11f0136 af1d89d 9b58814 11f0136 9b58814 af1d89d 9b58814 af1d89d 11f0136 af1d89d 11f0136 af1d89d 11f0136 9b58814 af1d89d 9b58814 af1d89d 11f0136 af1d89d 11f0136 af1d89d 11f0136 af1d89d 11f0136 af1d89d 11f0136 af1d89d 2437f5f af1d89d 11f0136 f45845d af1d89d 2437f5f af1d89d 2437f5f 9b58814 af1d89d 2437f5f 11f0136 9b58814 af1d89d 2437f5f 11f0136 9b58814 f45845d 11f0136 f45845d af1d89d 11f0136 af1d89d 11f0136 af1d89d 11f0136 af1d89d 11f0136 af1d89d 11f0136 af1d89d 11f0136 2437f5f 11f0136 af1d89d 11f0136 384eeae 11f0136 384eeae 11f0136 af1d89d 2437f5f 11f0136 1cac78f 384eeae 1cac78f 11f0136 af1d89d 1cac78f 11f0136 f45845d 2437f5f 11f0136 f45845d 11f0136 2437f5f 11f0136 2437f5f 11f0136 2437f5f 11f0136 9b58814 11f0136 384eeae 11f0136 af1d89d 11f0136 af1d89d 11f0136 384eeae af1d89d 2437f5f af1d89d 9b58814 11f0136 af1d89d 11f0136 631a418 af1d89d 631a418 11f0136 2437f5f af1d89d 11f0136 2437f5f 11f0136 631a418 2437f5f 11f0136 2437f5f 631a418 d1eb779 f45845d 11f0136 f45845d 11f0136 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import gradio as gr
from openai import OpenAI
import PyPDF2
import pandas as pd
import numpy as np
import io
import os
import json
import zipfile
import tempfile
from typing import Dict, List, Tuple, Union, Optional
import re
from pathlib import Path
import openpyxl
from dataclasses import dataclass
from enum import Enum
from docx import Document
from docx.shared import Inches, Pt, RGBColor
from docx.enum.text import WD_ALIGN_PARAGRAPH
from reportlab.lib import colors
from reportlab.lib.pagesizes import letter, A4
from reportlab.platypus import SimpleDocTemplate, Table, TableStyle, Paragraph, Spacer, PageBreak
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.pdfbase import pdfmetrics
from reportlab.pdfbase.ttfonts import TTFont
import matplotlib.pyplot as plt
from datetime import datetime
# Configuración para HuggingFace
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
# Inicializar el cliente de OpenAI para Nebius AI (Qwen)
client = OpenAI(
base_url="https://api.studio.nebius.com/v1/",
api_key=os.environ.get("NEBIUS_API_KEY")
)
# Sistema de traducción (sin cambios)
TRANSLATIONS = {
'en': {
'title': '🧬 Comparative Analyzer of Biotechnological Models',
'subtitle': 'Specialized in comparative analysis of mathematical model fitting results',
'upload_files': '📁 Upload fitting results (CSV/Excel)',
'select_model': '🤖 AI Model',
'select_language': '🌐 Language',
'select_theme': '🎨 Theme',
'detail_level': '📋 Analysis detail level',
'detailed': 'Detailed',
'summarized': 'Summarized',
'analyze_button': '🚀 Analyze and Compare Models',
'export_format': '📄 Export format',
'export_button': '💾 Export Report',
'comparative_analysis': '📊 Comparative Analysis',
'implementation_code': '💻 Full Implementation Code (AI-Generated)',
'data_format': '📋 Expected data format',
'examples': '📚 Analysis examples',
'light': 'Light',
'dark': 'Dark',
'best_for': 'Best for',
'loading': 'Loading...',
'error_no_api': 'Please configure NEBIUS_API_KEY in your environment secrets',
'error_no_files': 'Please upload fitting result files to analyze',
'report_exported': 'Report exported successfully as',
'specialized_in': '🎯 Specialized in:',
'metrics_analyzed': '📊 Analyzed metrics:',
'what_analyzes': '🔍 What it specifically analyzes:',
'tips': '💡 Tips for better results:',
'additional_specs': '📝 Additional specifications for analysis',
'additional_specs_placeholder': 'Add any specific requirements or focus areas for the analysis...'
},
'es': {
'title': '🧬 Analizador Comparativo de Modelos Biotecnológicos',
'subtitle': 'Especializado en análisis comparativo de resultados de ajuste de modelos matemáticos',
'upload_files': '📁 Subir resultados de ajuste (CSV/Excel)',
'select_model': '🤖 Modelo de IA',
'select_language': '🌐 Idioma',
'select_theme': '🎨 Tema',
'detail_level': '📋 Nivel de detalle del análisis',
'detailed': 'Detallado',
'summarized': 'Resumido',
'analyze_button': '🚀 Analizar y Comparar Modelos',
'export_format': '📄 Formato de exportación',
'export_button': '💾 Exportar Reporte',
'comparative_analysis': '📊 Análisis Comparativo',
'implementation_code': '💻 Código de Implementación Completo (Generado por IA)',
'data_format': '📋 Formato de datos esperado',
'examples': '📚 Ejemplos de análisis',
'light': 'Claro',
'dark': 'Oscuro',
'best_for': 'Mejor para',
'loading': 'Cargando...',
'error_no_api': 'Por favor configura NEBIUS_API_KEY en los secretos de tu entorno',
'error_no_files': 'Por favor sube archivos con resultados de ajuste para analizar',
'report_exported': 'Reporte exportado exitosamente como',
'specialized_in': '🎯 Especializado en:',
'metrics_analyzed': '📊 Métricas analizadas:',
'what_analyzes': '🔍 Qué analiza específicamente:',
'tips': '💡 Tips para mejores resultados:',
'additional_specs': '📝 Especificaciones adicionales para el análisis',
'additional_specs_placeholder': 'Agregue cualquier requerimiento específico o áreas de enfoque para el análisis...'
},
}
# Temas y Clases de Estructura (sin cambios)
THEMES = {'light': gr.themes.Soft(), 'dark': gr.themes.Base(primary_hue="blue", secondary_hue="gray", neutral_hue="gray", font=["Arial", "sans-serif"]).set(body_background_fill="dark", body_background_fill_dark="*neutral_950", button_primary_background_fill="*primary_600", button_primary_background_fill_hover="*primary_500", button_primary_text_color="white", block_background_fill="*neutral_800", block_border_color="*neutral_700", block_label_text_color="*neutral_200", block_title_text_color="*neutral_100", checkbox_background_color="*neutral_700", checkbox_background_color_selected="*primary_600", input_background_fill="*neutral_700", input_border_color="*neutral_600", input_placeholder_color="*neutral_400")}
class AnalysisType(Enum): MATHEMATICAL_MODEL = "mathematical_model"; DATA_FITTING = "data_fitting"; FITTING_RESULTS = "fitting_results"; UNKNOWN = "unknown"
@dataclass
class MathematicalModel: name: str; equation: str; parameters: List[str]; application: str; sources: List[str]; category: str; biological_meaning: str
class ModelRegistry:
def __init__(self): self.models = {}; self._initialize_default_models()
def register_model(self, model: MathematicalModel):
if model.category not in self.models: self.models[model.category] = {}
self.models[model.category][model.name] = model
def get_model(self, category: str, name: str) -> MathematicalModel: return self.models.get(category, {}).get(name)
def get_all_models(self) -> Dict: return self.models
def _initialize_default_models(self):
self.register_model(MathematicalModel(name="Monod", equation="μ = μmax × (S / (Ks + S))", parameters=["μmax (h⁻¹)", "Ks (g/L)"], application="Crecimiento limitado por sustrato único", sources=["Cambridge", "MIT", "DTU"], category="crecimiento_biomasa", biological_meaning="Describe cómo la velocidad de crecimiento depende de la concentración de sustrato limitante"))
self.register_model(MathematicalModel(name="Logístico", equation="dX/dt = μmax × X × (1 - X/Xmax)", parameters=["μmax (h⁻¹)", "Xmax (g/L)"], application="Sistemas cerrados batch", sources=["Cranfield", "Swansea", "HAL Theses"], category="crecimiento_biomasa", biological_meaning="Modela crecimiento limitado por capacidad de carga del sistema"))
self.register_model(MathematicalModel(name="Gompertz", equation="X(t) = Xmax × exp(-exp((μmax × e / Xmax) × (λ - t) + 1))", parameters=["λ (h)", "μmax (h⁻¹)", "Xmax (g/L)"], application="Crecimiento con fase lag pronunciada", sources=["Lund University", "NC State"], category="crecimiento_biomasa", biological_meaning="Incluye fase de adaptación (lag) seguida de crecimiento exponencial y estacionario"))
model_registry = ModelRegistry()
AI_MODELS = {"Qwen/Qwen3-14B": {"name": "Qwen 3 14B (Nebius)", "description": "Modelo potente de la serie Qwen, accedido vía Nebius AI.", "max_tokens": 8000, "best_for": "Análisis complejos y generación de código detallado."}}
class FileProcessor:
@staticmethod
def read_csv(csv_file) -> pd.DataFrame:
try: return pd.read_csv(io.BytesIO(csv_file))
except Exception: return None
@staticmethod
def read_excel(excel_file) -> pd.DataFrame:
try: return pd.read_excel(io.BytesIO(excel_file))
except Exception: return None
class ReportExporter:
@staticmethod
def export_to_docx(content: str, filename: str, language: str = 'en') -> str:
doc = Document()
doc.add_heading(TRANSLATIONS[language]['title'], 0)
doc.add_paragraph(f"{TRANSLATIONS[language]['generated_on']}: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
# ... (lógica de exportación completa)
doc.save(filename)
return filename
@staticmethod
def export_to_pdf(content: str, filename: str, language: str = 'en') -> str:
doc = SimpleDocTemplate(filename, pagesize=letter)
# ... (lógica de exportación completa)
doc.build([])
return filename
class AIAnalyzer:
def __init__(self, client: OpenAI, model_registry: ModelRegistry):
self.client = client
self.model_registry = model_registry
def get_language_prompt_prefix(self, language: str) -> str:
prefixes = {'en': "Please respond in English. ", 'es': "Por favor responde en español. ", 'fr': "Veuillez répondre en français. ", 'de': "Bitte antworten Sie auf Deutsch. ", 'pt': "Por favor responda em português. "}
return prefixes.get(language, prefixes['en'])
def analyze_fitting_results(self, data: pd.DataFrame, ai_model: str, detail_level: str = "detailed",
language: str = "en", additional_specs: str = "") -> Dict:
data_summary = f"FITTING RESULTS DATA:\n\n{data.to_string()}"
lang_prefix = self.get_language_prompt_prefix(language)
user_specs_section = f"\n\nUSER ADDITIONAL SPECIFICATIONS:\n{additional_specs}" if additional_specs else ""
# Prompt para el análisis de texto (sin cambios)
analysis_prompt = f"{lang_prefix}\nYou are an expert in biotechnology and mathematical modeling. Analyze these model fitting results.\n{user_specs_section}\nDETAIL LEVEL: {detail_level.upper()}\n\nProvide a comprehensive comparative analysis based on the provided data. Structure your response clearly using Markdown. Identify the best models for each experimental condition and justify your choices with metrics like R² and RMSE. Conclude with overall recommendations.\n\n{data_summary}"
# --- CAMBIO 1: Prompt de generación de código mejorado y más exigente ---
code_prompt = f"""
{lang_prefix}
Based on the following data, generate a SINGLE, COMPLETE, and EXECUTABLE Python script.
**Requirements for the script:**
1. **Self-Contained:** The script must be runnable as-is. It should NOT require any external CSV/Excel files.
2. **Embed Data:** You MUST embed the provided data directly into the script, for example, by creating a pandas DataFrame from a dictionary or a multiline string.
3. **Full Analysis:** The script should perform a complete analysis similar to the text report:
- Identify the best model (based on R²) for each 'Experiment' and 'Type' (Biomass, Substrate, Product).
- Print a clear summary table of the findings.
4. **Visualization:** The script MUST generate at least one publication-quality plot using Matplotlib or Seaborn to visually compare the performance (e.g., R² values) of the best models across different experiments. The plot must be clearly labeled.
5. **Code Quality:** Use clear variable names, comments, and functions or a class structure to organize the code logically.
6. **No Placeholders:** Do not use placeholder comments like '# Add visualization here'. Implement the full functionality.
**Data to use:**
```
{data.to_string()}
```
Generate only the Python code, starting with `import pandas as pd`.
"""
try:
# Llamada para el análisis de texto
analysis_response = self.client.chat.completions.create(
model=ai_model,
max_tokens=4000,
temperature=0.6,
messages=[{"role": "user", "content": analysis_prompt}]
)
analysis_text = analysis_response.choices[0].message.content
# Llamada para la generación de código
code_response = self.client.chat.completions.create(
model=ai_model,
max_tokens=4000,
temperature=0.4, # Ligeramente más determinista para el código
messages=[{"role": "user", "content": code_prompt}]
)
code_text = code_response.choices[0].message.content
# Limpiar el código si viene envuelto en ```python ... ```
if code_text.strip().startswith("```python"):
code_text = code_text.strip()[9:]
if code_text.strip().endswith("```"):
code_text = code_text.strip()[:-3]
return {
"analisis_completo": analysis_text,
"codigo_implementacion": code_text,
}
except Exception as e:
return {"error": str(e)}
def process_files(files, ai_model: str, detail_level: str = "detailed",
language: str = "en", additional_specs: str = "") -> Tuple[str, str]:
processor = FileProcessor()
analyzer = AIAnalyzer(client, model_registry)
all_analysis = []
all_code = []
if not files:
return TRANSLATIONS[language]['error_no_files'], ""
for file in files:
file_name = file.name if hasattr(file, 'name') else "archivo"
file_ext = Path(file_name).suffix.lower()
with open(file.name, 'rb') as f:
file_content = f.read()
if file_ext in ['.csv', '.xlsx', '.xls']:
all_analysis.append(f"## 📊 {TRANSLATIONS[language]['comparative_analysis']}: {file_name}")
df = processor.read_csv(file_content) if file_ext == '.csv' else processor.read_excel(file_content)
if df is not None:
result = analyzer.analyze_fitting_results(df, ai_model, detail_level, language, additional_specs)
if "error" in result:
all_analysis.append(f"An error occurred: {result['error']}")
else:
all_analysis.append(result.get("analisis_completo", "No analysis generated."))
# --- CAMBIO 2: Usar siempre el código de la IA, sin fallback ---
all_code.append(f"# Code generated for file: {file_name}\n" + result.get("codigo_implementacion", "# No code was generated for this file."))
else:
all_analysis.append("Could not read the file content.")
all_analysis.append("\n---\n")
final_analysis = "\n".join(all_analysis)
final_code = "\n\n".join(all_code)
return final_analysis, final_code
# --- CAMBIO 3: La función `generate_implementation_code` ha sido eliminada por completo. ---
# Estado de la aplicación y función de exportación (sin cambios)
class AppState:
def __init__(self): self.current_analysis = ""; self.current_code = ""; self.current_language = "en"
app_state = AppState()
def export_report(export_format: str, language: str) -> Tuple[str, str]:
# ... (lógica de exportación sin cambios)
pass
def create_interface():
current_language = "en"
def update_interface_language(language):
app_state.current_language = language
t = TRANSLATIONS[language]
return [gr.update(value=f"# {t['title']}"), gr.update(value=t['subtitle']), gr.update(label=t['upload_files']), gr.update(label=t['select_model']), gr.update(label=t['select_language']), gr.update(label=t['select_theme']), gr.update(label=t['detail_level']), gr.update(label=t['additional_specs'], placeholder=t['additional_specs_placeholder']), gr.update(value=t['analyze_button']), gr.update(label=t['export_format']), gr.update(value=t['export_button']), gr.update(label=t['comparative_analysis']), gr.update(label=t['implementation_code']), gr.update(label=t['data_format'])]
def process_and_store(files, model, detail, language, additional_specs):
analysis, code = process_files(files, model, detail, language, additional_specs)
app_state.current_analysis = analysis
app_state.current_code = code
return analysis, code
with gr.Blocks(theme=THEMES['light']) as demo:
# Definición de la UI (sin cambios estructurales, solo etiquetas)
with gr.Row():
with gr.Column(scale=3):
title_text = gr.Markdown(f"# {TRANSLATIONS[current_language]['title']}")
subtitle_text = gr.Markdown(TRANSLATIONS[current_language]['subtitle'])
with gr.Column(scale=1):
language_selector = gr.Dropdown(choices=[("English", "en"), ("Español", "es")], value="en", label=TRANSLATIONS[current_language]['select_language'], interactive=True)
theme_selector = gr.Dropdown(choices=[("Light", "light"), ("Dark", "dark")], value="light", label=TRANSLATIONS[current_language]['select_theme'], interactive=True)
with gr.Row():
with gr.Column(scale=1):
files_input = gr.File(label=TRANSLATIONS[current_language]['upload_files'], file_count="multiple", file_types=[".csv", ".xlsx", ".xls"], type="filepath")
default_model = "Qwen/Qwen3-14B"
model_selector = gr.Dropdown(choices=list(AI_MODELS.keys()), value=default_model, label=TRANSLATIONS[current_language]['select_model'], info=f"{TRANSLATIONS[current_language]['best_for']}: {AI_MODELS[default_model]['best_for']}")
detail_level = gr.Radio(choices=[(TRANSLATIONS[current_language]['detailed'], "detailed"), (TRANSLATIONS[current_language]['summarized'], "summarized")], value="detailed", label=TRANSLATIONS[current_language]['detail_level'])
additional_specs = gr.Textbox(label=TRANSLATIONS[current_language]['additional_specs'], placeholder=TRANSLATIONS[current_language]['additional_specs_placeholder'], lines=3, interactive=True)
analyze_btn = gr.Button(TRANSLATIONS[current_language]['analyze_button'], variant="primary", size="lg")
# ... (resto de botones de exportación)
with gr.Column(scale=2):
analysis_output = gr.Markdown(label=TRANSLATIONS[current_language]['comparative_analysis'])
code_output = gr.Code(label=TRANSLATIONS[current_language]['implementation_code'], language="python", interactive=True, lines=25) # Más líneas para el código completo
# ... (resto de la UI y eventos)
language_selector.change(update_interface_language, inputs=[language_selector], outputs=[title_text, subtitle_text, files_input, model_selector, language_selector, theme_selector, detail_level, additional_specs, analyze_btn, export_format, export_btn, analysis_output, code_output, data_format_accordion])
analyze_btn.click(fn=process_and_store, inputs=[files_input, model_selector, detail_level, language_selector, additional_specs], outputs=[analysis_output, code_output])
return demo
def main():
if not os.getenv("NEBIUS_API_KEY"):
print("⚠️ Configure NEBIUS_API_KEY in your environment secrets")
return gr.Interface(fn=lambda x: TRANSLATIONS['en']['error_no_api'], inputs=gr.Textbox(), outputs=gr.Textbox(), title="Configuration Error")
return create_interface()
if __name__ == "__main__":
demo = main()
if demo:
demo.launch(server_name="0.0.0.0", server_port=7860) |