File size: 20,509 Bytes
c2a9902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import gradio as gr
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report, accuracy_score, mean_squared_error
import warnings
warnings.filterwarnings('ignore')

class F1PredictiveMaintenance:
    def __init__(self):
        self.failure_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
        self.wear_predictor = RandomForestRegressor(n_estimators=100, random_state=42)
        self.scaler = StandardScaler()
        self.is_trained = False
        
        # Component definitions
        self.components = {
            'Engine': {'max_cycles': 7, 'critical_temp': 120, 'normal_temp': 95},
            'Gearbox': {'max_cycles': 6, 'critical_temp': 100, 'normal_temp': 80},
            'Turbocharger': {'max_cycles': 4, 'critical_temp': 140, 'normal_temp': 110},
            'MGU-K': {'max_cycles': 5, 'critical_temp': 90, 'normal_temp': 70},
            'MGU-H': {'max_cycles': 4, 'critical_temp': 130, 'normal_temp': 105},
            'Suspension': {'max_cycles': 8, 'critical_temp': 60, 'normal_temp': 45},
            'Brakes': {'max_cycles': 3, 'critical_temp': 200, 'normal_temp': 150},
            'Tires': {'max_cycles': 1, 'critical_temp': 120, 'normal_temp': 80}
        }
        
    def generate_maintenance_data(self, num_samples=3000):
        """Generate realistic F1 component maintenance data"""
        np.random.seed(42)
        
        data = []
        
        for _ in range(num_samples):
            # Select random component
            component = np.random.choice(list(self.components.keys()))
            comp_info = self.components[component]
            
            # Usage parameters
            race_weekend = np.random.randint(1, 25)  # Race weekend number
            session_type = np.random.choice(['Practice', 'Qualifying', 'Race'])
            laps_completed = np.random.randint(10, 70)
            
            # Session intensity (Race > Qualifying > Practice)
            intensity_multiplier = {'Practice': 0.7, 'Qualifying': 1.0, 'Race': 1.2}[session_type]
            
            # Environmental conditions
            ambient_temp = np.random.uniform(15, 35)  # °C
            humidity = np.random.uniform(40, 90)  # %
            track_temp = ambient_temp + np.random.uniform(5, 25)
            
            # Operating conditions
            max_temp = comp_info['normal_temp'] + np.random.normal(0, 10) * intensity_multiplier
            max_temp = np.clip(max_temp, comp_info['normal_temp'] * 0.8, comp_info['critical_temp'] * 1.2)
            
            avg_temp = max_temp * 0.8 + np.random.normal(0, 5)
            vibration = np.random.exponential(2) * intensity_multiplier
            load_factor = np.random.uniform(0.6, 1.2) * intensity_multiplier
            
            # Component age and usage
            cycles_used = np.random.uniform(0, comp_info['max_cycles'] * 1.5)
            total_laps = cycles_used * np.random.uniform(300, 800)  # Laps per cycle
            
            # Wear calculation
            temp_stress = max(0, (max_temp - comp_info['normal_temp']) / comp_info['normal_temp'])
            usage_stress = cycles_used / comp_info['max_cycles']
            environmental_stress = (track_temp - 30) / 50 + humidity / 200
            
            wear_level = (usage_stress * 0.4 + temp_stress * 0.3 + 
                         vibration * 0.1 + load_factor * 0.1 + environmental_stress * 0.1)
            wear_level = np.clip(wear_level, 0, 1)
            
            # Failure prediction
            failure_probability = wear_level ** 2
            if component in ['Engine', 'Gearbox']:
                failure_probability *= 0.8  # More reliable components
            elif component in ['Turbocharger', 'MGU-H']:
                failure_probability *= 1.3  # Less reliable components
            
            # Add random failures
            failure_risk = failure_probability > 0.7 or np.random.random() < 0.05
            
            # Maintenance recommendations
            if wear_level > 0.8:
                maintenance_action = 'Replace'
            elif wear_level > 0.6:
                maintenance_action = 'Inspect'
            elif wear_level > 0.4:
                maintenance_action = 'Monitor'
            else:
                maintenance_action = 'Normal'
            
            data.append({
                'component': component,
                'race_weekend': race_weekend,
                'session_type': session_type,
                'laps_completed': laps_completed,
                'ambient_temp': ambient_temp,
                'track_temp': track_temp,
                'humidity': humidity,
                'max_temp': max_temp,
                'avg_temp': avg_temp,
                'vibration': vibration,
                'load_factor': load_factor,
                'cycles_used': cycles_used,
                'total_laps': total_laps,
                'wear_level': wear_level,
                'failure_risk': failure_risk,
                'maintenance_action': maintenance_action
            })
        
        return pd.DataFrame(data)
    
    def train_models(self, data):
        """Train predictive maintenance models"""
        # Prepare features
        feature_columns = ['race_weekend', 'laps_completed', 'ambient_temp', 'track_temp', 
                          'humidity', 'max_temp', 'avg_temp', 'vibration', 'load_factor', 
                          'cycles_used', 'total_laps']
        
        # Encode categorical variables
        data_encoded = data.copy()
        data_encoded['component_encoded'] = pd.Categorical(data['component']).codes
        data_encoded['session_encoded'] = pd.Categorical(data['session_type']).codes
        
        feature_columns.extend(['component_encoded', 'session_encoded'])
        
        X = data_encoded[feature_columns]
        X_scaled = self.scaler.fit_transform(X)
        
        # Train failure classifier
        y_failure = data['failure_risk']
        self.failure_classifier.fit(X_scaled, y_failure)
        
        # Train wear predictor
        y_wear = data['wear_level']
        self.wear_predictor.fit(X_scaled, y_wear)
        
        self.is_trained = True
        
        # Calculate performance metrics
        failure_pred = self.failure_classifier.predict(X_scaled)
        wear_pred = self.wear_predictor.predict(X_scaled)
        
        failure_accuracy = accuracy_score(y_failure, failure_pred)
        wear_rmse = np.sqrt(mean_squared_error(y_wear, wear_pred))
        
        return failure_accuracy, wear_rmse, data_encoded
    
    def predict_maintenance(self, component, race_weekend, session_type, laps_completed,
                           ambient_temp, track_temp, humidity, max_temp, avg_temp,
                           vibration, load_factor, cycles_used, total_laps):
        """Predict maintenance requirements for a component"""
        if not self.is_trained:
            return "Model not trained", "Model not trained", "Model not trained"
        
        # Encode inputs
        component_encoded = list(self.components.keys()).index(component)
        session_encoded = ['Practice', 'Qualifying', 'Race'].index(session_type)
        
        # Prepare feature vector
        features = np.array([[race_weekend, laps_completed, ambient_temp, track_temp,
                            humidity, max_temp, avg_temp, vibration, load_factor,
                            cycles_used, total_laps, component_encoded, session_encoded]])
        
        features_scaled = self.scaler.transform(features)
        
        # Make predictions
        failure_prob = self.failure_classifier.predict_proba(features_scaled)[0][1]
        wear_level = self.wear_predictor.predict(features_scaled)[0]
        
        # Determine maintenance action
        if wear_level > 0.8 or failure_prob > 0.7:
            maintenance_action = "REPLACE - Critical wear detected"
        elif wear_level > 0.6 or failure_prob > 0.5:
            maintenance_action = "INSPECT - High wear detected"
        elif wear_level > 0.4 or failure_prob > 0.3:
            maintenance_action = "MONITOR - Moderate wear"
        else:
            maintenance_action = "NORMAL - Good condition"
        
        return f"Failure Risk: {failure_prob:.1%}", f"Wear Level: {wear_level:.1%}", maintenance_action
    
    def create_maintenance_dashboard(self, data):
        """Create comprehensive maintenance visualization"""
        fig, axes = plt.subplots(2, 2, figsize=(15, 12))
        
        # Component reliability analysis
        component_failure_rate = data.groupby('component')['failure_risk'].mean().sort_values(ascending=False)
        bars = axes[0, 0].bar(component_failure_rate.index, component_failure_rate.values, 
                             color='lightcoral', alpha=0.7)
        axes[0, 0].set_title('Component Failure Risk Analysis')
        axes[0, 0].set_ylabel('Failure Risk')
        axes[0, 0].tick_params(axis='x', rotation=45)
        axes[0, 0].grid(True, alpha=0.3)
        
        # Add value labels on bars
        for bar in bars:
            height = bar.get_height()
            axes[0, 0].text(bar.get_x() + bar.get_width()/2., height,
                           f'{height:.1%}', ha='center', va='bottom')
        
        # Wear level distribution
        axes[0, 1].hist(data['wear_level'], bins=20, alpha=0.7, color='skyblue', edgecolor='black')
        axes[0, 1].axvline(data['wear_level'].mean(), color='red', linestyle='--', 
                          label=f'Mean: {data["wear_level"].mean():.2f}')
        axes[0, 1].set_title('Component Wear Distribution')
        axes[0, 1].set_xlabel('Wear Level')
        axes[0, 1].set_ylabel('Frequency')
        axes[0, 1].legend()
        axes[0, 1].grid(True, alpha=0.3)
        
        # Temperature vs Wear correlation
        scatter = axes[1, 0].scatter(data['max_temp'], data['wear_level'], 
                                   c=data['failure_risk'], cmap='RdYlBu_r', alpha=0.6)
        axes[1, 0].set_xlabel('Maximum Temperature (°C)')
        axes[1, 0].set_ylabel('Wear Level')
        axes[1, 0].set_title('Temperature Impact on Component Wear')
        plt.colorbar(scatter, ax=axes[1, 0], label='Failure Risk')
        axes[1, 0].grid(True, alpha=0.3)
        
        # Maintenance action recommendations
        maintenance_counts = data['maintenance_action'].value_counts()
        wedges, texts, autotexts = axes[1, 1].pie(maintenance_counts.values, 
                                                 labels=maintenance_counts.index, 
                                                 autopct='%1.1f%%', startangle=90)
        axes[1, 1].set_title('Maintenance Action Distribution')
        
        plt.tight_layout()
        return fig
    
    def generate_maintenance_schedule(self, data):
        """Generate maintenance schedule recommendations"""
        schedule = []
        
        for component in self.components.keys():
            comp_data = data[data['component'] == component]
            
            if len(comp_data) == 0:
                continue
            
            avg_wear = comp_data['wear_level'].mean()
            failure_rate = comp_data['failure_risk'].mean()
            
            # Calculate recommended maintenance interval
            if failure_rate > 0.3:
                interval = "Every race weekend"
            elif failure_rate > 0.15:
                interval = "Every 2 race weekends"
            elif failure_rate > 0.05:
                interval = "Every 3 race weekends"
            else:
                interval = "Every 4 race weekends"
            
            # Priority based on criticality
            if component in ['Engine', 'Gearbox']:
                priority = "High"
            elif component in ['Turbocharger', 'MGU-K', 'MGU-H']:
                priority = "Critical"
            else:
                priority = "Medium"
            
            schedule.append({
                'Component': component,
                'Average Wear': f"{avg_wear:.1%}",
                'Failure Rate': f"{failure_rate:.1%}",
                'Recommended Interval': interval,
                'Priority': priority
            })
        
        return pd.DataFrame(schedule)

# Initialize the maintenance system
maintenance_system = F1PredictiveMaintenance()

def analyze_maintenance_data():
    """Analyze maintenance data and train models"""
    # Generate data
    data = maintenance_system.generate_maintenance_data(3000)
    
    # Train models
    failure_acc, wear_rmse, data_encoded = maintenance_system.train_models(data)
    
    # Create visualizations
    fig = maintenance_system.create_maintenance_dashboard(data)
    
    # Generate maintenance schedule
    schedule = maintenance_system.generate_maintenance_schedule(data)
    
    # Create summary report
    report = f"""
    ## F1 Predictive Maintenance Analysis
    
    **Model Performance:**
    - Failure Prediction Accuracy: {failure_acc:.1%}
    - Wear Level RMSE: {wear_rmse:.3f}
    
    **Fleet Analysis:**
    - Total components analyzed: {len(data)}
    - Average wear level: {data['wear_level'].mean():.1%}
    - Components at risk: {(data['wear_level'] > 0.6).sum()}
    - High-priority maintenance: {(data['maintenance_action'] == 'Replace').sum()}
    
    **Risk Assessment:**
    - Highest risk component: {data.groupby('component')['failure_risk'].mean().idxmax()}
    - Most reliable component: {data.groupby('component')['failure_risk'].mean().idxmin()}
    - Critical temperature events: {(data['max_temp'] > 120).sum()}
    
    **Maintenance Recommendations:**
    - Immediate attention needed: {(data['wear_level'] > 0.8).sum()} components
    - Scheduled inspection: {(data['wear_level'] > 0.6).sum()} components
    - Monitoring required: {(data['wear_level'] > 0.4).sum()} components
    """
    
    return fig, report, schedule

def predict_component_maintenance(component, race_weekend, session_type, laps_completed,
                                ambient_temp, track_temp, humidity, max_temp, avg_temp,
                                vibration, load_factor, cycles_used, total_laps):
    """Predict maintenance for specific component"""
    if not maintenance_system.is_trained:
        return "Please run the analysis first!", "", ""
    
    failure_risk, wear_level, maintenance_action = maintenance_system.predict_maintenance(
        component, race_weekend, session_type, laps_completed,
        ambient_temp, track_temp, humidity, max_temp, avg_temp,
        vibration, load_factor, cycles_used, total_laps
    )
    
    return failure_risk, wear_level, maintenance_action

# Create Gradio interface
with gr.Blocks(title="F1 Predictive Maintenance System", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# F1 Predictive Maintenance System")
    gr.Markdown("AI-powered predictive maintenance for Formula 1 components with failure prediction and wear analysis.")
    
    with gr.Tab("Maintenance Analysis"):
        gr.Markdown("### Analyze component reliability and maintenance requirements")
        analyze_btn = gr.Button("Analyze Fleet Data", variant="primary")
        
        with gr.Row():
            with gr.Column(scale=2):
                maintenance_plot = gr.Plot(label="Maintenance Dashboard")
            with gr.Column(scale=1):
                maintenance_report = gr.Markdown(label="Analysis Report")
        
        with gr.Row():
            maintenance_schedule = gr.DataFrame(label="Maintenance Schedule", interactive=False)
        
        analyze_btn.click(
            analyze_maintenance_data,
            outputs=[maintenance_plot, maintenance_report, maintenance_schedule]
        )
    
    with gr.Tab("Component Prediction"):
        gr.Markdown("### Predict maintenance requirements for specific components")
        gr.Markdown("*Note: Run the analysis first to train the models*")
        
        with gr.Row():
            with gr.Column():
                gr.Markdown("**Component Information:**")
                component_select = gr.Dropdown(
                    choices=list(maintenance_system.components.keys()),
                    value="Engine",
                    label="Component"
                )
                race_weekend_input = gr.Slider(1, 25, value=10, label="Race Weekend")
                session_type_select = gr.Dropdown(
                    choices=["Practice", "Qualifying", "Race"],
                    value="Race",
                    label="Session Type"
                )
                laps_input = gr.Slider(10, 70, value=50, label="Laps Completed")
                
                gr.Markdown("**Operating Conditions:**")
                ambient_temp_input = gr.Slider(15, 35, value=25, label="Ambient Temperature (°C)")
                track_temp_input = gr.Slider(20, 60, value=40, label="Track Temperature (°C)")
                humidity_input = gr.Slider(40, 90, value=65, label="Humidity (%)")
                max_temp_input = gr.Slider(60, 200, value=100, label="Max Component Temperature (°C)")
                avg_temp_input = gr.Slider(50, 150, value=85, label="Average Temperature (°C)")
                
            with gr.Column():
                gr.Markdown("**Component Usage:**")
                vibration_input = gr.Slider(0, 10, value=2, label="Vibration Level")
                load_factor_input = gr.Slider(0.5, 1.5, value=1.0, label="Load Factor")
                cycles_input = gr.Slider(0, 10, value=3, label="Cycles Used")
                total_laps_input = gr.Slider(0, 5000, value=1500, label="Total Laps")
                
                predict_btn = gr.Button("Predict Maintenance", variant="secondary")
                
                gr.Markdown("**Predictions:**")
                failure_risk_output = gr.Textbox(label="Failure Risk", interactive=False)
                wear_level_output = gr.Textbox(label="Wear Level", interactive=False)
                maintenance_action_output = gr.Textbox(label="Maintenance Action", interactive=False)
        
        predict_btn.click(
            predict_component_maintenance,
            inputs=[component_select, race_weekend_input, session_type_select, laps_input,
                   ambient_temp_input, track_temp_input, humidity_input, max_temp_input,
                   avg_temp_input, vibration_input, load_factor_input, cycles_input, total_laps_input],
            outputs=[failure_risk_output, wear_level_output, maintenance_action_output]
        )
    
    with gr.Tab("About"):
        gr.Markdown("""
        ## About This System
        
        This F1 Predictive Maintenance System uses advanced AI to predict component failures and optimize maintenance schedules:
        
        **Failure Prediction:**
        - Random Forest Classifier predicts component failure risk
        - Considers operating conditions, usage patterns, and environmental factors
        - Provides early warning for potential failures
        
        **Wear Analysis:**
        - Machine learning model predicts component wear levels
        - Accounts for temperature stress, vibration, and load factors
        - Enables proactive maintenance scheduling
        
        **Key Features:**
        - Real-time component health monitoring
        - Predictive maintenance recommendations
        - Temperature and environmental impact analysis
        - Maintenance schedule optimization
        - Component reliability assessment
        
        **Component Coverage:**
        - Engine and power unit components
        - Transmission and drivetrain
        - Hybrid energy systems (MGU-K, MGU-H)
        - Suspension and braking systems
        - Tires and consumables
        
        **Technical Implementation:**
        - Random Forest algorithms for robust predictions
        - Feature engineering for component-specific factors
        - Time-series analysis for wear progression
        - Risk assessment and priority classification
        
        **Racing Applications:**
        - Prevent costly race retirements
        - Optimize component allocation across seasons
        - Reduce unexpected failures during critical sessions
        - Enhance reliability through data-driven maintenance
        """)

if __name__ == "__main__":
    demo.launch()