File size: 3,955 Bytes
91c3d7f
d707455
 
 
 
 
91c3d7f
 
d707455
 
 
 
 
91c3d7f
d707455
 
083533c
 
 
 
 
 
 
 
 
d707455
083533c
 
 
21b5793
 
083533c
d707455
 
 
 
 
 
 
 
 
 
 
 
21b5793
d707455
 
 
 
 
 
 
 
 
91c3d7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21b5793
 
 
 
 
 
 
91c3d7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# MetaDiscovery Agent - LOC API with Collection Selector and Search Endpoint + Enhanced Features

import requests
import pandas as pd
import streamlit as st
import plotly.express as px
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

# Streamlit app header
st.title("MetaDiscovery Agent for Library of Congress Collections")
st.markdown("""
This tool connects to the LOC API, retrieves metadata from a selected collection, and performs
an analysis of metadata completeness, suggests enhancements, and identifies authority gaps.
""")

# Predefined LOC collections
collections = {
    "American Revolutionary War Maps": "american-revolutionary-war-maps",
    "Civil War Maps": "civil-war-maps",
    "Women’s Suffrage": "womens-suffrage",
    "World War I Posters": "world-war-i-posters"
}

# Sidebar for selecting collection
st.sidebar.markdown("## Settings")
selected = st.sidebar.selectbox("Select a collection", list(collections.keys()))
collection_path = collections[selected]

# Updated: Use LOC Search API with partof filter (URL encoding for colon)
collection_url = f"https://www.loc.gov/search/?q=&fa=partof%3A{collection_path}&fo=json"
st.sidebar.write(f"Selected Collection: {selected}")

# Fetch data from LOC API
response = requests.get(collection_url)
data = response.json()

# Parse metadata records
records = data.get("results", [])

# Extract selected metadata fields
items = []
for record in records:
    items.append({
        "id": record.get("id"),
        "title": record.get("title"),
        "date": record.get("date"),
        "subject": record.get("subject"),
        "creator": record.get("creator"),
        "description": record.get("description")
    })

# Create DataFrame
metadata_df = pd.DataFrame(items)

if not metadata_df.empty:
    st.subheader("📦 Retrieved Metadata Sample")
    st.dataframe(metadata_df.head())

    # Metadata completeness analysis
    st.subheader("🧠 Metadata Completeness Analysis")
    completeness = metadata_df.notnull().mean() * 100
    completeness_df = pd.DataFrame({"Field": completeness.index, "Completeness (%)": completeness.values})

    # Plot completeness
    fig = px.bar(completeness_df, x="Field", y="Completeness (%)", title="Metadata Completeness by Field")
    st.plotly_chart(fig)

    # List records with missing values
    st.subheader("⚠️ Records with Incomplete Metadata")
    incomplete_records = metadata_df[metadata_df.isnull().any(axis=1)]
    st.dataframe(incomplete_records)

    # Show exact items that need updates
    st.subheader("📌 Identifiers of Items Needing Metadata Updates")
    if not incomplete_records.empty:
        st.write(incomplete_records[['id', 'title']])
    else:
        st.success("All records are complete!")

    # Suggest metadata using text similarity (basic example)
    st.subheader("✨ Suggested Metadata Enhancements")
    filled_descriptions = metadata_df[metadata_df['description'].notnull()]['description'].astype(str)
    tfidf = TfidfVectorizer(stop_words='english')
    tfidf_matrix = tfidf.fit_transform(filled_descriptions)
    sim_matrix = cosine_similarity(tfidf_matrix)

    suggestions = []
    for idx, row in incomplete_records.iterrows():
        if pd.isna(row['subject']) and pd.notna(row['description']):
            desc_vec = tfidf.transform([str(row['description'])])
            sims = cosine_similarity(desc_vec, tfidf_matrix).flatten()
            top_idx = sims.argmax()
            suggested_subject = metadata_df.iloc[top_idx]['subject']
            suggestions.append((row['title'], suggested_subject))

    if suggestions:
        suggestions_df = pd.DataFrame(suggestions, columns=["Title", "Suggested Subject"])
        st.dataframe(suggestions_df)
    else:
        st.info("No metadata enhancement suggestions available.")

else:
    st.warning("No metadata records found for this collection. Try selecting another one.")