CCockrum's picture
Update app.py
9e7da33 verified
raw
history blame
14.3 kB
# MetaDiscovery Agent - LOC API with Enhanced Completeness and Quality Analysis
import requests
import pandas as pd
import numpy as np
import streamlit as st
import matplotlib
import plotly.express as px
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# Custom CSS for white background, styled sidebar, banner, and dark grey font
st.markdown("""
<style>
.main {
background-color: #D3D3D3 !important;
color: #1A1A1A!important;
}
.block-container {
background-color: gray !important;
color: #1A1A1A!important;
}
section[data-testid="stSidebar"] > div:first-child {
background-color: #808080 !important;
padding: 1rem;
border-radius: 0.5rem;
color: #808080 !important;
}
.stMarkdown, .stTextInput, .stDataFrame {
color: #1A1A1A!important;
}
img.banner {
width: 100%;
border-radius: 12px;
margin-bottom: 1rem;
}
.stAlert {
background-color: #f0f0f5 !important;
color: #333333 !important;
padding: 1.25rem !important;
font-size: 1rem !important;
border-radius: 0.5rem !important;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05) !important;
}
header[data-testid="stHeader"] {
background-color: gray !important;
}
section[data-testid="stSidebar"] > div:first-child {
background-color: #1A1A1A !important;
color: #FFFFFF !important;
padding: 2rem 1.5rem 1.5rem 1.5rem !important;
border-radius: 12px;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08);
font-size: 0.95rem;
line-height: 1.5;
}
.block-container {
background-color: gray !important;
color: #1A1A1A !important;
padding-left: 2rem !important;
padding-right: 2rem !important;
box-shadow: none !important;
}
html, body, [data-testid="stApp"] {
background-color: #1A1A1A !important;
}
.custom-table {
background-color: #D3D3D3;
color: #1A1A1A;
font-family: monospace;
padding: 1rem;
border-radius: 8px;
overflow-x: auto;
white-space: pre;
border: 1px solid #ccc;
}
.sidebar-stats {
color: lightgray !important;
font-size: 1.1rem !important;
margin-top: 1.5rem;
font-weight: 600;
}
.sidebar-contrast-block {
background-color: #2b2b2b !important; /* Slightly lighter than #1A1A1A */
padding: 1.25rem;
border-radius: 10px;
margin-top: 1.5rem;
}
</style>
""", unsafe_allow_html=True)
# OPTION 1: Use an image from a URL for the banner
st.image("https://cdn-uploads.huggingface.co/production/uploads/67351c643fe51cb1aa28f2e5/7ThcAOjbuM8ajrP85bGs4.jpeg", use_container_width=True)
# Streamlit app header
st.title("MetaDiscovery Agent for Library of Congress Collections")
st.markdown("""
This tool connects to the LOC API, retrieves metadata from a selected collection, and performs
an analysis of metadata completeness, suggests enhancements, and identifies authority gaps.
""")
# Updated collection URLs using the correct LOC API format
collections = {
"American Revolutionary War Maps": "american+revolutionary+war+maps",
"Civil War Maps": "civil+war+maps",
"Women's Suffrage": "women+suffrage",
"World War I Posters": "world+war+posters"
}
# Sidebar for selecting collection
#st.sidebar.markdown("## Settings")
# Create empty metadata_df variable to ensure it exists before checking
metadata_df = pd.DataFrame()
# Add a key to the selectbox to ensure it refreshes properly
selected = st.sidebar.selectbox("Select a collection", list(collections.keys()), key="collection_selector")
search_query = collections[selected]
# Define the collection URL
collection_url = f"https://www.loc.gov/search/?q={search_query}&fo=json"
# Create an empty placeholder for Quick Stats
stats_placeholder = st.sidebar.empty()
# Create placeholder for Field Completeness Breakdown
completeness_placeholder = st.sidebar.empty()
# Helpful Resources (styled and moved below dropdown)
st.sidebar.markdown("### Helpful Resources", unsafe_allow_html=True)
# Helpful Resources styled section
# 3. Helpful Resources Section (Fixed, under Completeness)
st.sidebar.markdown("""
<style>
.sidebar-section h3 {
color: lightgray !important;
font-size: 1.1rem !important;
margin-top: 1.5rem;
}
.sidebar-links a {
color: lightgray !important;
text-decoration: none !important;
}
.sidebar-links a:hover {
text-decoration: underline !important;
}
</style>
<div class="sidebar-section">
<h3>πŸ”— Helpful Resources</h3>
<div class="sidebar-links">
<ul style='padding-left: 1em'>
<li><a href="https://www.loc.gov/apis/" target="_blank">LOC API Info</a></li>
<li><a href="https://www.loc.gov/" target="_blank">Library of Congress Homepage</a></li>
<li><a href="https://www.loc.gov/collections/" target="_blank">LOC Digital Collections</a></li>
<li><a href="https://www.loc.gov/marc/" target="_blank">MARC Metadata Standards</a></li>
<li><a href="https://labs.loc.gov/about-labs/digital-strategy/" target="_blank">LOC Digital Strategy</a></li>
</ul>
</div>
</div>
""", unsafe_allow_html=True)
# Add a fetch button to make the action explicit
fetch_data = True
if fetch_data:
# Display a loading spinner while fetching data
with st.spinner(f"Fetching data for {selected}..."):
# Fetch data from LOC API with spoofed User-Agent header
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 Chrome/110.0.0.0 Safari/537.36"
}
try:
response = requests.get(collection_url, headers=headers)
response.raise_for_status()
data = response.json()
if "results" in data:
records = data.get("results", [])
elif "items" in data:
records = data.get("items", [])
else:
records = []
st.error("Unexpected API response structure. No records found.")
st.write(f"Retrieved {len(records)} records")
except requests.exceptions.RequestException as e:
st.error(f"API Connection Error: {e}")
records = []
except ValueError:
st.error("Failed to parse API response as JSON")
records = []
# Extract selected metadata fields
items = []
for record in records:
if isinstance(record, dict):
description = record.get("description", "")
if isinstance(description, list):
description = " ".join([str(d) for d in description])
item = {
"id": record.get("id", ""),
"title": record.get("title", ""),
"date": record.get("date", ""),
"subject": ", ".join(record.get("subject", [])) if isinstance(record.get("subject"), list) else record.get("subject", ""),
"creator": record.get("creator", ""),
"description": description
}
if not item["title"] and "item" in record:
item["title"] = record.get("item", {}).get("title", "")
if not item["date"] and "item" in record:
item["date"] = record.get("item", {}).get("date", "")
items.append(item)
metadata_df = pd.DataFrame(items)
# Define custom completeness check
def is_incomplete(value):
return pd.isna(value) or value in ["", "N/A", "null", None]
if not metadata_df.empty:
incomplete_mask = metadata_df.map(is_incomplete).any(axis=1)
incomplete_count = incomplete_mask.sum()
total_fields = metadata_df.size
filled_fields = (~metadata_df.map(is_incomplete)).sum().sum()
overall_percent = (filled_fields / total_fields) * 100
stats_html = f"""
<div class="sidebar-stats">
<h3 style="color: lightgray;">πŸ“Š Quick Stats</h3>
<p style="color:lightgray;">Total Records: <b>{len(metadata_df)}</b></p>
<p style="color:lightgray;">Incomplete Records: <b>{incomplete_count}</b></p>
<p style="color:lightgray;">Overall Metadata Completeness: <b>{overall_percent:.1f}%</b></p>
</div>
"""
stats_placeholder.markdown(stats_html, unsafe_allow_html=True)
# βœ… Then show this right after
with st.sidebar.expander("πŸ“Š Field Completeness Breakdown", expanded=True):
st.dataframe(
completeness_table.style.background_gradient(cmap="Greens").format("{:.1f}%"),
use_container_width=True,
height=240
)
# Render collapsible green completeness table in sidebar
with st.sidebar.expander("πŸ“Š Field Completeness Breakdown", expanded=True):
st.dataframe(
completeness_table.style.background_gradient(cmap="Greens").format("{:.1f}%"),
use_container_width=True,
height=240
)
# Utility functions for deeper metadata quality analysis
def is_incomplete(value):
return pd.isna(value) or value in ["", "N/A", "null", None]
def is_valid_date(value):
try:
pd.to_datetime(value)
return True
except:
return False
if not metadata_df.empty:
st.subheader("Retrieved Metadata Sample")
st.dataframe(metadata_df.head())
# Metadata completeness analysis (enhanced)
st.subheader("Metadata Completeness Analysis")
# Create the completeness table
completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100
completeness_df = pd.DataFrame({
"Field": completeness.index,
"Completeness (%)": completeness.values
})
completeness_table = completeness_df.set_index("Field")
# FILL THE PLACEHOLDER created earlier
with completeness_placeholder:
st.markdown("""
<div style='
background-color: #2e2e2e;
padding: 1.2rem;
border-radius: 10px;
margin-top: 1.5rem;
color: lightgray;
'>
<h4 style='margin-bottom: 1rem;'>Field Completeness Breakdown</h4>
""", unsafe_allow_html=True)
st.dataframe(
completeness_table.style.background_gradient(cmap="Greens").format("{:.1f}%"),
use_container_width=True,
height=240
)
st.markdown("</div>", unsafe_allow_html=True)
# Then continue plotting in main panel
fig = px.bar(completeness_df, x="Field", y="Completeness (%)", title="Metadata Completeness by Field")
st.plotly_chart(fig)
# Identify incomplete records
incomplete_mask = metadata_df.map(is_incomplete).any(axis=1)
incomplete_records = metadata_df[incomplete_mask]
st.subheader("✨ Suggested Metadata Enhancements")
incomplete_with_desc = incomplete_records[incomplete_records['description'].notnull()]
reference_df = metadata_df[metadata_df['subject'].notnull() & metadata_df['description'].notnull()]
tfidf = TfidfVectorizer(stop_words='english')
if len(incomplete_with_desc) > 1 and len(reference_df) > 1:
try:
suggestions = []
tfidf_matrix = tfidf.fit_transform(reference_df['description'])
for idx, row in incomplete_with_desc.iterrows():
if pd.isna(row['subject']) and pd.notna(row['description']):
desc_vec = tfidf.transform([str(row['description'])])
sims = cosine_similarity(desc_vec, tfidf_matrix).flatten()
top_idx = sims.argmax()
suggested_subject = reference_df.iloc[top_idx]['subject']
if pd.notna(suggested_subject) and suggested_subject:
suggestions.append((row['title'], suggested_subject))
if suggestions:
suggestions_df = pd.DataFrame(suggestions, columns=["Title", "Suggested Subject"])
st.markdown("<div class='custom-table'>" + suggestions_df.to_markdown(index=False) + "</div>", unsafe_allow_html=True)
else:
st.markdown("""
<div class='custom-table'>
<b>No metadata enhancement suggestions available.</b>
</div>
""", unsafe_allow_html=True)
except Exception as e:
st.error(f"Error generating metadata suggestions: {e}")
else:
st.markdown("""
<div class='custom-table'>
<b>Not enough descriptive data to generate metadata suggestions.</b>
</div>
""", unsafe_allow_html=True)
else:
st.warning("⚠️ No metadata records found for this collection. Try selecting another one.")