Spaces:
Running
Running
File size: 14,279 Bytes
3c67c1b d707455 3c67c1b d707455 c39747a d707455 91c3d7f d707455 3c67c1b 08b2694 c39747a 3c67c1b c39747a 3c67c1b c39747a 8dba0ce c39747a 3c67c1b 6080190 3c67c1b c39747a 3c67c1b c39747a 3c67c1b c39747a 3c67c1b c39747a 3c67c1b c39747a 3c67c1b 08b2694 3c67c1b 12da302 c39747a 3c67c1b c3039ab c39747a d707455 3c67c1b 083533c b948611 083533c c39747a 3c67c1b c3039ab b948611 3c67c1b bc2c7d0 1ce0089 3c67c1b c39747a 3c67c1b c39747a 4e04d7b 3c67c1b 8956cd9 3c67c1b 8956cd9 3c67c1b 39d75ee 3c67c1b c39747a 3c67c1b 9e7da33 da2bbef 3c67c1b da2bbef 8dba0ce 3c67c1b c39747a 3c67c1b c39747a 3c67c1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
# MetaDiscovery Agent - LOC API with Enhanced Completeness and Quality Analysis
import requests
import pandas as pd
import numpy as np
import streamlit as st
import matplotlib
import plotly.express as px
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# Custom CSS for white background, styled sidebar, banner, and dark grey font
st.markdown("""
<style>
.main {
background-color: #D3D3D3 !important;
color: #1A1A1A!important;
}
.block-container {
background-color: gray !important;
color: #1A1A1A!important;
}
section[data-testid="stSidebar"] > div:first-child {
background-color: #808080 !important;
padding: 1rem;
border-radius: 0.5rem;
color: #808080 !important;
}
.stMarkdown, .stTextInput, .stDataFrame {
color: #1A1A1A!important;
}
img.banner {
width: 100%;
border-radius: 12px;
margin-bottom: 1rem;
}
.stAlert {
background-color: #f0f0f5 !important;
color: #333333 !important;
padding: 1.25rem !important;
font-size: 1rem !important;
border-radius: 0.5rem !important;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05) !important;
}
header[data-testid="stHeader"] {
background-color: gray !important;
}
section[data-testid="stSidebar"] > div:first-child {
background-color: #1A1A1A !important;
color: #FFFFFF !important;
padding: 2rem 1.5rem 1.5rem 1.5rem !important;
border-radius: 12px;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08);
font-size: 0.95rem;
line-height: 1.5;
}
.block-container {
background-color: gray !important;
color: #1A1A1A !important;
padding-left: 2rem !important;
padding-right: 2rem !important;
box-shadow: none !important;
}
html, body, [data-testid="stApp"] {
background-color: #1A1A1A !important;
}
.custom-table {
background-color: #D3D3D3;
color: #1A1A1A;
font-family: monospace;
padding: 1rem;
border-radius: 8px;
overflow-x: auto;
white-space: pre;
border: 1px solid #ccc;
}
.sidebar-stats {
color: lightgray !important;
font-size: 1.1rem !important;
margin-top: 1.5rem;
font-weight: 600;
}
.sidebar-contrast-block {
background-color: #2b2b2b !important; /* Slightly lighter than #1A1A1A */
padding: 1.25rem;
border-radius: 10px;
margin-top: 1.5rem;
}
</style>
""", unsafe_allow_html=True)
# OPTION 1: Use an image from a URL for the banner
st.image("https://cdn-uploads.huggingface.co/production/uploads/67351c643fe51cb1aa28f2e5/7ThcAOjbuM8ajrP85bGs4.jpeg", use_container_width=True)
# Streamlit app header
st.title("MetaDiscovery Agent for Library of Congress Collections")
st.markdown("""
This tool connects to the LOC API, retrieves metadata from a selected collection, and performs
an analysis of metadata completeness, suggests enhancements, and identifies authority gaps.
""")
# Updated collection URLs using the correct LOC API format
collections = {
"American Revolutionary War Maps": "american+revolutionary+war+maps",
"Civil War Maps": "civil+war+maps",
"Women's Suffrage": "women+suffrage",
"World War I Posters": "world+war+posters"
}
# Sidebar for selecting collection
#st.sidebar.markdown("## Settings")
# Create empty metadata_df variable to ensure it exists before checking
metadata_df = pd.DataFrame()
# Add a key to the selectbox to ensure it refreshes properly
selected = st.sidebar.selectbox("Select a collection", list(collections.keys()), key="collection_selector")
search_query = collections[selected]
# Define the collection URL
collection_url = f"https://www.loc.gov/search/?q={search_query}&fo=json"
# Create an empty placeholder for Quick Stats
stats_placeholder = st.sidebar.empty()
# Create placeholder for Field Completeness Breakdown
completeness_placeholder = st.sidebar.empty()
# Helpful Resources (styled and moved below dropdown)
st.sidebar.markdown("### Helpful Resources", unsafe_allow_html=True)
# Helpful Resources styled section
# 3. Helpful Resources Section (Fixed, under Completeness)
st.sidebar.markdown("""
<style>
.sidebar-section h3 {
color: lightgray !important;
font-size: 1.1rem !important;
margin-top: 1.5rem;
}
.sidebar-links a {
color: lightgray !important;
text-decoration: none !important;
}
.sidebar-links a:hover {
text-decoration: underline !important;
}
</style>
<div class="sidebar-section">
<h3>π Helpful Resources</h3>
<div class="sidebar-links">
<ul style='padding-left: 1em'>
<li><a href="https://www.loc.gov/apis/" target="_blank">LOC API Info</a></li>
<li><a href="https://www.loc.gov/" target="_blank">Library of Congress Homepage</a></li>
<li><a href="https://www.loc.gov/collections/" target="_blank">LOC Digital Collections</a></li>
<li><a href="https://www.loc.gov/marc/" target="_blank">MARC Metadata Standards</a></li>
<li><a href="https://labs.loc.gov/about-labs/digital-strategy/" target="_blank">LOC Digital Strategy</a></li>
</ul>
</div>
</div>
""", unsafe_allow_html=True)
# Add a fetch button to make the action explicit
fetch_data = True
if fetch_data:
# Display a loading spinner while fetching data
with st.spinner(f"Fetching data for {selected}..."):
# Fetch data from LOC API with spoofed User-Agent header
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 Chrome/110.0.0.0 Safari/537.36"
}
try:
response = requests.get(collection_url, headers=headers)
response.raise_for_status()
data = response.json()
if "results" in data:
records = data.get("results", [])
elif "items" in data:
records = data.get("items", [])
else:
records = []
st.error("Unexpected API response structure. No records found.")
st.write(f"Retrieved {len(records)} records")
except requests.exceptions.RequestException as e:
st.error(f"API Connection Error: {e}")
records = []
except ValueError:
st.error("Failed to parse API response as JSON")
records = []
# Extract selected metadata fields
items = []
for record in records:
if isinstance(record, dict):
description = record.get("description", "")
if isinstance(description, list):
description = " ".join([str(d) for d in description])
item = {
"id": record.get("id", ""),
"title": record.get("title", ""),
"date": record.get("date", ""),
"subject": ", ".join(record.get("subject", [])) if isinstance(record.get("subject"), list) else record.get("subject", ""),
"creator": record.get("creator", ""),
"description": description
}
if not item["title"] and "item" in record:
item["title"] = record.get("item", {}).get("title", "")
if not item["date"] and "item" in record:
item["date"] = record.get("item", {}).get("date", "")
items.append(item)
metadata_df = pd.DataFrame(items)
# Define custom completeness check
def is_incomplete(value):
return pd.isna(value) or value in ["", "N/A", "null", None]
if not metadata_df.empty:
incomplete_mask = metadata_df.map(is_incomplete).any(axis=1)
incomplete_count = incomplete_mask.sum()
total_fields = metadata_df.size
filled_fields = (~metadata_df.map(is_incomplete)).sum().sum()
overall_percent = (filled_fields / total_fields) * 100
stats_html = f"""
<div class="sidebar-stats">
<h3 style="color: lightgray;">π Quick Stats</h3>
<p style="color:lightgray;">Total Records: <b>{len(metadata_df)}</b></p>
<p style="color:lightgray;">Incomplete Records: <b>{incomplete_count}</b></p>
<p style="color:lightgray;">Overall Metadata Completeness: <b>{overall_percent:.1f}%</b></p>
</div>
"""
stats_placeholder.markdown(stats_html, unsafe_allow_html=True)
# β
Then show this right after
with st.sidebar.expander("π Field Completeness Breakdown", expanded=True):
st.dataframe(
completeness_table.style.background_gradient(cmap="Greens").format("{:.1f}%"),
use_container_width=True,
height=240
)
# Render collapsible green completeness table in sidebar
with st.sidebar.expander("π Field Completeness Breakdown", expanded=True):
st.dataframe(
completeness_table.style.background_gradient(cmap="Greens").format("{:.1f}%"),
use_container_width=True,
height=240
)
# Utility functions for deeper metadata quality analysis
def is_incomplete(value):
return pd.isna(value) or value in ["", "N/A", "null", None]
def is_valid_date(value):
try:
pd.to_datetime(value)
return True
except:
return False
if not metadata_df.empty:
st.subheader("Retrieved Metadata Sample")
st.dataframe(metadata_df.head())
# Metadata completeness analysis (enhanced)
st.subheader("Metadata Completeness Analysis")
# Create the completeness table
completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100
completeness_df = pd.DataFrame({
"Field": completeness.index,
"Completeness (%)": completeness.values
})
completeness_table = completeness_df.set_index("Field")
# FILL THE PLACEHOLDER created earlier
with completeness_placeholder:
st.markdown("""
<div style='
background-color: #2e2e2e;
padding: 1.2rem;
border-radius: 10px;
margin-top: 1.5rem;
color: lightgray;
'>
<h4 style='margin-bottom: 1rem;'>Field Completeness Breakdown</h4>
""", unsafe_allow_html=True)
st.dataframe(
completeness_table.style.background_gradient(cmap="Greens").format("{:.1f}%"),
use_container_width=True,
height=240
)
st.markdown("</div>", unsafe_allow_html=True)
# Then continue plotting in main panel
fig = px.bar(completeness_df, x="Field", y="Completeness (%)", title="Metadata Completeness by Field")
st.plotly_chart(fig)
# Identify incomplete records
incomplete_mask = metadata_df.map(is_incomplete).any(axis=1)
incomplete_records = metadata_df[incomplete_mask]
st.subheader("β¨ Suggested Metadata Enhancements")
incomplete_with_desc = incomplete_records[incomplete_records['description'].notnull()]
reference_df = metadata_df[metadata_df['subject'].notnull() & metadata_df['description'].notnull()]
tfidf = TfidfVectorizer(stop_words='english')
if len(incomplete_with_desc) > 1 and len(reference_df) > 1:
try:
suggestions = []
tfidf_matrix = tfidf.fit_transform(reference_df['description'])
for idx, row in incomplete_with_desc.iterrows():
if pd.isna(row['subject']) and pd.notna(row['description']):
desc_vec = tfidf.transform([str(row['description'])])
sims = cosine_similarity(desc_vec, tfidf_matrix).flatten()
top_idx = sims.argmax()
suggested_subject = reference_df.iloc[top_idx]['subject']
if pd.notna(suggested_subject) and suggested_subject:
suggestions.append((row['title'], suggested_subject))
if suggestions:
suggestions_df = pd.DataFrame(suggestions, columns=["Title", "Suggested Subject"])
st.markdown("<div class='custom-table'>" + suggestions_df.to_markdown(index=False) + "</div>", unsafe_allow_html=True)
else:
st.markdown("""
<div class='custom-table'>
<b>No metadata enhancement suggestions available.</b>
</div>
""", unsafe_allow_html=True)
except Exception as e:
st.error(f"Error generating metadata suggestions: {e}")
else:
st.markdown("""
<div class='custom-table'>
<b>Not enough descriptive data to generate metadata suggestions.</b>
</div>
""", unsafe_allow_html=True)
else:
st.warning("β οΈ No metadata records found for this collection. Try selecting another one.")
|