CCockrum's picture
Create app.py
d707455 verified
raw
history blame
1.83 kB
# MetaDiscovery Agent - Phase 1: LOC API Integration and Metadata Gap Analysis
import requests
import pandas as pd
import streamlit as st
import plotly.express as px
# Streamlit app header
st.title("MetaDiscovery Agent for Library of Congress Collections")
st.markdown("""
This tool connects to the LOC API, retrieves metadata from a selected collection, and performs
an initial analysis of metadata completeness.
""")
# User selects a collection (predefined for prototype)
collection_url = "https://www.loc.gov/collections/american-revolutionary-war-maps/?fo=json"
st.sidebar.markdown("## Settings")
st.sidebar.write("Collection: American Revolutionary War Maps")
# Fetch data from LOC API
response = requests.get(collection_url)
data = response.json()
# Parse metadata records
records = data.get("results", [])
# Extract selected metadata fields
items = []
for record in records:
items.append({
"title": record.get("title"),
"date": record.get("date"),
"subject": record.get("subject"),
"creator": record.get("creator"),
"description": record.get("description")
})
# Create DataFrame
metadata_df = pd.DataFrame(items)
st.subheader("📦 Retrieved Metadata Sample")
st.dataframe(metadata_df.head())
# Metadata completeness analysis
st.subheader("🧠 Metadata Completeness Analysis")
completeness = metadata_df.notnull().mean() * 100
completeness_df = pd.DataFrame({"Field": completeness.index, "Completeness (%)": completeness.values})
# Plot completeness
fig = px.bar(completeness_df, x="Field", y="Completeness (%)", title="Metadata Completeness by Field")
st.plotly_chart(fig)
# List records with missing values
st.subheader("⚠️ Records with Incomplete Metadata")
incomplete_records = metadata_df[metadata_df.isnull().any(axis=1)]
st.dataframe(incomplete_records)