Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -43,7 +43,7 @@ st.markdown("""
|
|
43 |
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05) !important;
|
44 |
}
|
45 |
header[data-testid="stHeader"] {
|
46 |
-
background-color: #
|
47 |
}
|
48 |
section[data-testid="stSidebar"] > div:first-child {
|
49 |
background-color: #1A1A1A !important;
|
@@ -166,11 +166,11 @@ if fetch_data:
|
|
166 |
return False
|
167 |
|
168 |
if not metadata_df.empty:
|
169 |
-
st.subheader("
|
170 |
st.dataframe(metadata_df.head())
|
171 |
|
172 |
# Metadata completeness analysis (enhanced)
|
173 |
-
st.subheader("
|
174 |
completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100
|
175 |
completeness_df = pd.DataFrame({"Field": completeness.index, "Completeness (%)": completeness.values})
|
176 |
fig = px.bar(completeness_df, x="Field", y="Completeness (%)", title="Metadata Completeness by Field")
|
@@ -180,19 +180,19 @@ if fetch_data:
|
|
180 |
incomplete_mask = metadata_df.map(is_incomplete).any(axis=1)
|
181 |
incomplete_records = metadata_df[incomplete_mask]
|
182 |
|
183 |
-
st.subheader("
|
184 |
if not incomplete_records.empty:
|
185 |
st.dataframe(incomplete_records.astype(str))
|
186 |
else:
|
187 |
st.success("All metadata fields are complete in this collection!")
|
188 |
|
189 |
-
st.subheader("
|
190 |
if not incomplete_records.empty:
|
191 |
st.write(incomplete_records[['id', 'title']])
|
192 |
else:
|
193 |
st.success("All records are complete!")
|
194 |
|
195 |
-
st.subheader("
|
196 |
filled_descriptions = metadata_df[metadata_df['description'].notnull()]['description'].astype(str)
|
197 |
if len(filled_descriptions) > 1:
|
198 |
try:
|
|
|
43 |
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05) !important;
|
44 |
}
|
45 |
header[data-testid="stHeader"] {
|
46 |
+
background-color: #Gray !important;
|
47 |
}
|
48 |
section[data-testid="stSidebar"] > div:first-child {
|
49 |
background-color: #1A1A1A !important;
|
|
|
166 |
return False
|
167 |
|
168 |
if not metadata_df.empty:
|
169 |
+
st.subheader("Retrieved Metadata Sample")
|
170 |
st.dataframe(metadata_df.head())
|
171 |
|
172 |
# Metadata completeness analysis (enhanced)
|
173 |
+
st.subheader("Metadata Completeness Analysis")
|
174 |
completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100
|
175 |
completeness_df = pd.DataFrame({"Field": completeness.index, "Completeness (%)": completeness.values})
|
176 |
fig = px.bar(completeness_df, x="Field", y="Completeness (%)", title="Metadata Completeness by Field")
|
|
|
180 |
incomplete_mask = metadata_df.map(is_incomplete).any(axis=1)
|
181 |
incomplete_records = metadata_df[incomplete_mask]
|
182 |
|
183 |
+
st.subheader("Records with Incomplete Metadata")
|
184 |
if not incomplete_records.empty:
|
185 |
st.dataframe(incomplete_records.astype(str))
|
186 |
else:
|
187 |
st.success("All metadata fields are complete in this collection!")
|
188 |
|
189 |
+
st.subheader("Identifiers of Items Needing Metadata Updates")
|
190 |
if not incomplete_records.empty:
|
191 |
st.write(incomplete_records[['id', 'title']])
|
192 |
else:
|
193 |
st.success("All records are complete!")
|
194 |
|
195 |
+
st.subheader("Suggested Metadata Enhancements")
|
196 |
filled_descriptions = metadata_df[metadata_df['description'].notnull()]['description'].astype(str)
|
197 |
if len(filled_descriptions) > 1:
|
198 |
try:
|