NASA-AI-Chatbot / app.py
CCockrum's picture
Update app.py
391ca85 verified
raw
history blame
8.92 kB
import os
import re
import random
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
# Must be the first Streamlit command!
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")
# Appearance settings (optional): you can modify these as needed
user_bg_color = "#0078D7"
assistant_bg_color = "#333333"
text_color = "#FFFFFF"
font_choice = "sans serif"
# Inject custom CSS for appearance
custom_css = f"""
<style>
.user-msg {{
background-color: {user_bg_color};
color: {text_color};
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
font-family: {font_choice};
}}
.assistant-msg {{
background-color: {assistant_bg_color};
color: {text_color};
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
font-family: {font_choice};
}}
.container {{
display: flex;
flex-direction: column;
align-items: flex-start;
}}
@media (max-width: 600px) {{
.user-msg, .assistant-msg {{
font-size: 16px;
max-width: 100%;
}}
}}
</style>
"""
st.markdown(custom_css, unsafe_allow_html=True)
# Initialize session state variables
if "chat_history" not in st.session_state:
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
if "response_ready" not in st.session_state:
st.session_state.response_ready = False
if "follow_up" not in st.session_state:
st.session_state.follow_up = ""
if "saved_conversations" not in st.session_state:
st.session_state.saved_conversations = {} # dict mapping conv_id -> chat_history
# Set up keys from environment variables
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable not set.")
NASA_API_KEY = os.getenv("NASA_API_KEY")
if not NASA_API_KEY:
raise ValueError("NASA_API_KEY environment variable not set.")
# --- Model & API functions ---
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
sentiment_analyzer = pipeline(
"sentiment-analysis",
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
revision="714eb0f"
)
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7):
return HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token=HF_TOKEN,
task="text-generation"
)
def get_nasa_apod():
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
else:
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now."
def analyze_sentiment(user_text):
result = sentiment_analyzer(user_text)[0]
return result['label']
def predict_action(user_text):
return "nasa_info" if ("nasa" in user_text.lower() or "space" in user_text.lower()) else "general_query"
def generate_follow_up(user_text):
prompt_text = (
f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions that invite further discussion. "
"For example, one could be 'Would you like to know more about the six types of quarks?' and another 'Would you like to explore another aspect of quantum physics?'. "
"Return only the questions, separated by a newline."
)
hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
output = hf.invoke(input=prompt_text).strip()
variants = re.split(r"\n|[;]+", output)
cleaned = [v.strip(' "\'') for v in variants if v.strip()]
if not cleaned:
cleaned = ["Would you like to explore this topic further?"]
return random.choice(cleaned)
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
sentiment = analyze_sentiment(user_text)
action = predict_action(user_text)
style_instruction = ""
lower_text = user_text.lower()
if "in the voice of" in lower_text or "speaking as" in lower_text:
match = re.search(r"(in the voice of|speaking as)(.*)", lower_text)
if match:
style_instruction = match.group(2).strip().capitalize()
style_instruction = f" Please respond in the voice of {style_instruction}."
# Handle NASA queries separately
if action == "nasa_info":
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
response = f"**{nasa_title}**\n\n{nasa_explanation}"
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, nasa_url
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
filtered_history = ""
for message in chat_history:
if message["role"] == "assistant" and message["content"].strip() == "Hello! How can I assist you today?":
continue
filtered_history += f"{message['role']}: {message['content']}\n"
style_clause = style_instruction if style_instruction else ""
prompt = PromptTemplate.from_template(
(
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
"User: {user_text}.\n [/INST]\n"
"AI: Please provide a detailed, in-depth answer in a friendly, conversational tone. "
"Begin with a phrase like 'Certainly!', 'Of course!', or 'Great question!'." + style_clause +
"\nHAL:"
)
)
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
response = response.split("HAL:")[-1].strip()
if not response:
response = "Certainly, here is an in-depth explanation: [Fallback explanation]."
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
if sentiment == "NEGATIVE" and not user_text.strip().endswith("?"):
response = "I'm sorry you're feeling this way. I'm here to help. What can I do to assist you further?"
chat_history[-1]['content'] = response
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, None
# --- Sidebar: Save/Load Conversations ---
st.sidebar.header("Saved Conversations")
if st.sidebar.button("Save Current Conversation"):
conv_id = f"Conv {len(st.session_state.saved_conversations) + 1}"
st.session_state.saved_conversations[conv_id] = st.session_state.chat_history.copy()
st.sidebar.success(f"Conversation saved as {conv_id}.")
if st.session_state.saved_conversations:
for conv_id in st.session_state.saved_conversations:
if st.sidebar.button(f"Load {conv_id}"):
st.session_state.chat_history = st.session_state.saved_conversations[conv_id].copy()
st.sidebar.info(f"Loaded {conv_id}.")
# --- Main Chat UI ---
st.title("πŸš€ HAL - Your NASA AI Assistant")
st.markdown("🌌 *Ask me about space, NASA, and beyond!*")
if st.sidebar.button("Reset Chat"):
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
st.session_state.response_ready = False
st.session_state.follow_up = ""
st.experimental_rerun()
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
user_input = st.chat_input("Type your message here...")
if user_input:
response, follow_up, st.session_state.chat_history, image_url = get_response(
system_message="You are a helpful AI assistant.",
user_text=user_input,
chat_history=st.session_state.chat_history
)
if image_url:
st.image(image_url, caption="NASA Image of the Day")
st.session_state.follow_up = follow_up
st.session_state.response_ready = True