Spaces:
Sleeping
Sleeping
File size: 8,915 Bytes
a3e0475 ffbccbb 1fd6803 fc5f1c7 d6f5773 fc5f1c7 a3e0475 5c095c6 fc42bd4 391ca85 5c095c6 391ca85 def3a29 5c095c6 1fd6803 5c095c6 1fd6803 def3a29 391ca85 5c095c6 391ca85 94ac9e7 5c095c6 fc5f1c7 5c095c6 a3e0475 391ca85 5c095c6 a3e0475 94ac9e7 391ca85 94ac9e7 5c095c6 94ac9e7 391ca85 073538f fc5f1c7 5c095c6 fc5f1c7 391ca85 fc5f1c7 391ca85 fc5f1c7 1fd6803 fc5f1c7 5c095c6 fc5f1c7 ffbccbb d4c5e46 391ca85 fc5f1c7 5c095c6 2a239ae 5c095c6 fc5f1c7 5c095c6 391ca85 5c095c6 ad1c148 d4c5e46 1fd6803 2a239ae ad0b8d6 fc42bd4 391ca85 ffbccbb ad0b8d6 2a239ae ad1c148 5c095c6 fdf3b40 2a239ae 4b25132 f6bb49b fc5f1c7 5c095c6 2a239ae 391ca85 0b6b797 5c095c6 2a239ae 391ca85 5c095c6 def3a29 5c095c6 1fd6803 f543f0b ad0b8d6 5c095c6 ad0b8d6 5c095c6 ad0b8d6 5c095c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import os
import re
import random
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
# Must be the first Streamlit command!
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π")
# Appearance settings (optional): you can modify these as needed
user_bg_color = "#0078D7"
assistant_bg_color = "#333333"
text_color = "#FFFFFF"
font_choice = "sans serif"
# Inject custom CSS for appearance
custom_css = f"""
<style>
.user-msg {{
background-color: {user_bg_color};
color: {text_color};
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
font-family: {font_choice};
}}
.assistant-msg {{
background-color: {assistant_bg_color};
color: {text_color};
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
font-family: {font_choice};
}}
.container {{
display: flex;
flex-direction: column;
align-items: flex-start;
}}
@media (max-width: 600px) {{
.user-msg, .assistant-msg {{
font-size: 16px;
max-width: 100%;
}}
}}
</style>
"""
st.markdown(custom_css, unsafe_allow_html=True)
# Initialize session state variables
if "chat_history" not in st.session_state:
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
if "response_ready" not in st.session_state:
st.session_state.response_ready = False
if "follow_up" not in st.session_state:
st.session_state.follow_up = ""
if "saved_conversations" not in st.session_state:
st.session_state.saved_conversations = {} # dict mapping conv_id -> chat_history
# Set up keys from environment variables
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable not set.")
NASA_API_KEY = os.getenv("NASA_API_KEY")
if not NASA_API_KEY:
raise ValueError("NASA_API_KEY environment variable not set.")
# --- Model & API functions ---
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
sentiment_analyzer = pipeline(
"sentiment-analysis",
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
revision="714eb0f"
)
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7):
return HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token=HF_TOKEN,
task="text-generation"
)
def get_nasa_apod():
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
else:
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now."
def analyze_sentiment(user_text):
result = sentiment_analyzer(user_text)[0]
return result['label']
def predict_action(user_text):
return "nasa_info" if ("nasa" in user_text.lower() or "space" in user_text.lower()) else "general_query"
def generate_follow_up(user_text):
prompt_text = (
f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions that invite further discussion. "
"For example, one could be 'Would you like to know more about the six types of quarks?' and another 'Would you like to explore another aspect of quantum physics?'. "
"Return only the questions, separated by a newline."
)
hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
output = hf.invoke(input=prompt_text).strip()
variants = re.split(r"\n|[;]+", output)
cleaned = [v.strip(' "\'') for v in variants if v.strip()]
if not cleaned:
cleaned = ["Would you like to explore this topic further?"]
return random.choice(cleaned)
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
sentiment = analyze_sentiment(user_text)
action = predict_action(user_text)
style_instruction = ""
lower_text = user_text.lower()
if "in the voice of" in lower_text or "speaking as" in lower_text:
match = re.search(r"(in the voice of|speaking as)(.*)", lower_text)
if match:
style_instruction = match.group(2).strip().capitalize()
style_instruction = f" Please respond in the voice of {style_instruction}."
# Handle NASA queries separately
if action == "nasa_info":
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
response = f"**{nasa_title}**\n\n{nasa_explanation}"
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, nasa_url
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
filtered_history = ""
for message in chat_history:
if message["role"] == "assistant" and message["content"].strip() == "Hello! How can I assist you today?":
continue
filtered_history += f"{message['role']}: {message['content']}\n"
style_clause = style_instruction if style_instruction else ""
prompt = PromptTemplate.from_template(
(
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
"User: {user_text}.\n [/INST]\n"
"AI: Please provide a detailed, in-depth answer in a friendly, conversational tone. "
"Begin with a phrase like 'Certainly!', 'Of course!', or 'Great question!'." + style_clause +
"\nHAL:"
)
)
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
response = response.split("HAL:")[-1].strip()
if not response:
response = "Certainly, here is an in-depth explanation: [Fallback explanation]."
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
if sentiment == "NEGATIVE" and not user_text.strip().endswith("?"):
response = "I'm sorry you're feeling this way. I'm here to help. What can I do to assist you further?"
chat_history[-1]['content'] = response
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, None
# --- Sidebar: Save/Load Conversations ---
st.sidebar.header("Saved Conversations")
if st.sidebar.button("Save Current Conversation"):
conv_id = f"Conv {len(st.session_state.saved_conversations) + 1}"
st.session_state.saved_conversations[conv_id] = st.session_state.chat_history.copy()
st.sidebar.success(f"Conversation saved as {conv_id}.")
if st.session_state.saved_conversations:
for conv_id in st.session_state.saved_conversations:
if st.sidebar.button(f"Load {conv_id}"):
st.session_state.chat_history = st.session_state.saved_conversations[conv_id].copy()
st.sidebar.info(f"Loaded {conv_id}.")
# --- Main Chat UI ---
st.title("π HAL - Your NASA AI Assistant")
st.markdown("π *Ask me about space, NASA, and beyond!*")
if st.sidebar.button("Reset Chat"):
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
st.session_state.response_ready = False
st.session_state.follow_up = ""
st.experimental_rerun()
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
user_input = st.chat_input("Type your message here...")
if user_input:
response, follow_up, st.session_state.chat_history, image_url = get_response(
system_message="You are a helpful AI assistant.",
user_text=user_input,
chat_history=st.session_state.chat_history
)
if image_url:
st.image(image_url, caption="NASA Image of the Day")
st.session_state.follow_up = follow_up
st.session_state.response_ready = True
|