CCockrum commited on
Commit
073538f
Β·
verified Β·
1 Parent(s): 1fddcd6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +132 -40
app.py CHANGED
@@ -1,51 +1,83 @@
1
  import os
2
- from langchain_huggingface import HuggingFaceEndpoint
3
  import streamlit as st
 
4
  from langchain_core.prompts import PromptTemplate
5
  from langchain_core.output_parsers import StrOutputParser
6
- import requests
7
- from config import NASA_API_KEY # Import the NASA API key from the configuration file
 
 
 
 
 
 
 
8
 
 
 
 
 
 
 
 
9
  model_id = "mistralai/Mistral-7B-Instruct-v0.3"
10
 
 
 
 
11
  def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
12
- llm = HuggingFaceEndpoint(
13
  repo_id=model_id,
14
  max_new_tokens=max_new_tokens,
15
  temperature=temperature,
16
- token=os.getenv("HF_TOKEN") # Hugging Face token from environment variable
17
  )
18
- return llm
19
 
20
  def get_nasa_apod():
21
- """
22
- Fetch the Astronomy Picture of the Day (APOD) from the NASA API.
23
- """
24
  url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
25
  response = requests.get(url)
26
  if response.status_code == 200:
27
  data = response.json()
28
- return f"Title: {data['title']}\nExplanation: {data['explanation']}\nURL: {data['url']}"
29
  else:
30
- return "I couldn't fetch data from NASA right now. Please try again later."
 
 
 
 
31
 
32
- def get_response(system_message, chat_history, user_text,
33
- eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}):
34
  if "NASA" in user_text or "space" in user_text:
35
- nasa_response = get_nasa_apod()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  chat_history.append({'role': 'user', 'content': user_text})
37
- chat_history.append({'role': 'assistant', 'content': nasa_response})
38
- return nasa_response, chat_history
 
 
 
39
 
40
  hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
41
 
42
  prompt = PromptTemplate.from_template(
43
- (
44
- "[INST] {system_message}"
45
- "\nCurrent Conversation:\n{chat_history}\n\n"
46
- "\nUser: {user_text}.\n [/INST]"
47
- "\nAI:"
48
- )
49
  )
50
  chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
51
  response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
@@ -53,31 +85,91 @@ def get_response(system_message, chat_history, user_text,
53
 
54
  chat_history.append({'role': 'user', 'content': user_text})
55
  chat_history.append({'role': 'assistant', 'content': response})
56
- return response, chat_history
57
 
58
- # Streamlit setup
59
- st.set_page_config(page_title="HuggingFace ChatBot", page_icon="πŸ€—")
60
- st.title("NASA Personal Assistant")
61
- st.markdown(f"*This chatbot uses {model_id} and NASA's APIs to provide information and responses.*")
62
 
63
- # Initialize session state
64
- if "chat_history" not in st.session_state:
65
- st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
66
-
67
- # Sidebar for settings
 
 
 
 
 
68
  if st.sidebar.button("Reset Chat"):
69
  st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
- # Main chat interface
72
- user_input = st.chat_input(placeholder="Type your message here...")
73
  if user_input:
74
- response, st.session_state.chat_history = get_response(
75
  system_message="You are a helpful AI assistant.",
76
  user_text=user_input,
77
- chat_history=st.session_state.chat_history,
78
- max_new_tokens=128
79
  )
80
- # Display messages
81
- for message in st.session_state.chat_history:
82
- st.chat_message(message["role"]).write(message["content"])
83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ import requests
3
  import streamlit as st
4
+ from langchain_huggingface import HuggingFaceEndpoint
5
  from langchain_core.prompts import PromptTemplate
6
  from langchain_core.output_parsers import StrOutputParser
7
+ from transformers import pipeline
8
+ from config import NASA_API_KEY # Ensure this file exists with your NASA API Key
9
+
10
+ # Set up Streamlit UI
11
+ st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")
12
+
13
+ # --- Ensure Session State Variables are Initialized ---
14
+ if "chat_history" not in st.session_state:
15
+ st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
16
 
17
+ if "response_ready" not in st.session_state:
18
+ st.session_state.response_ready = False # Tracks whether HAL has responded
19
+
20
+ if "follow_up" not in st.session_state:
21
+ st.session_state.follow_up = "" # Stores follow-up question
22
+
23
+ # --- Set Up Model & API Functions ---
24
  model_id = "mistralai/Mistral-7B-Instruct-v0.3"
25
 
26
+ # Initialize sentiment analysis pipeline
27
+ sentiment_analyzer = pipeline("sentiment-analysis")
28
+
29
  def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
30
+ return HuggingFaceEndpoint(
31
  repo_id=model_id,
32
  max_new_tokens=max_new_tokens,
33
  temperature=temperature,
34
+ token=os.getenv("HF_TOKEN") # Hugging Face API Token
35
  )
 
36
 
37
  def get_nasa_apod():
 
 
 
38
  url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
39
  response = requests.get(url)
40
  if response.status_code == 200:
41
  data = response.json()
42
+ return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
43
  else:
44
+ return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."
45
+
46
+ def analyze_sentiment(user_text):
47
+ result = sentiment_analyzer(user_text)[0]
48
+ return result['label']
49
 
50
+ def predict_action(user_text):
 
51
  if "NASA" in user_text or "space" in user_text:
52
+ return "nasa_info"
53
+ return "general_query"
54
+
55
+ def generate_follow_up(user_text):
56
+ prompt_text = (
57
+ f"Based on the user's message: '{user_text}', suggest a natural follow-up question "
58
+ "to keep the conversation engaging."
59
+ )
60
+ hf = get_llm_hf_inference(max_new_tokens=64, temperature=0.7)
61
+ return hf.invoke(input=prompt_text).strip()
62
+
63
+ def get_response(system_message, chat_history, user_text, max_new_tokens=256):
64
+ sentiment = analyze_sentiment(user_text)
65
+ action = predict_action(user_text)
66
+
67
+ if action == "nasa_info":
68
+ nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
69
+ response = f"**{nasa_title}**\n\n{nasa_explanation}"
70
  chat_history.append({'role': 'user', 'content': user_text})
71
+ chat_history.append({'role': 'assistant', 'content': response})
72
+
73
+ follow_up = generate_follow_up(user_text)
74
+ chat_history.append({'role': 'assistant', 'content': follow_up})
75
+ return response, follow_up, chat_history, nasa_url
76
 
77
  hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
78
 
79
  prompt = PromptTemplate.from_template(
80
+ "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\nUser: {user_text}.\n [/INST]\nAI:"
 
 
 
 
 
81
  )
82
  chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
83
  response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
 
85
 
86
  chat_history.append({'role': 'user', 'content': user_text})
87
  chat_history.append({'role': 'assistant', 'content': response})
 
88
 
89
+ if sentiment == "NEGATIVE":
90
+ response += "\n😞 I'm sorry to hear that. How can I assist you further?"
 
 
91
 
92
+ follow_up = generate_follow_up(user_text)
93
+ chat_history.append({'role': 'assistant', 'content': follow_up})
94
+
95
+ return response, follow_up, chat_history, None
96
+
97
+ # --- Chat UI ---
98
+ st.title("πŸš€ HAL - Your NASA AI Assistant")
99
+ st.markdown("🌌 *Ask me about space, NASA, and beyond!*")
100
+
101
+ # Sidebar: Reset Chat
102
  if st.sidebar.button("Reset Chat"):
103
  st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
104
+ st.session_state.response_ready = False
105
+ st.session_state.follow_up = ""
106
+ st.experimental_rerun()
107
+
108
+ # Custom Chat Styling
109
+ st.markdown("""
110
+ <style>
111
+ .user-msg {
112
+ background-color: #0078D7;
113
+ color: white;
114
+ padding: 10px;
115
+ border-radius: 10px;
116
+ margin-bottom: 5px;
117
+ width: fit-content;
118
+ max-width: 80%;
119
+ }
120
+ .assistant-msg {
121
+ background-color: #333333;
122
+ color: white;
123
+ padding: 10px;
124
+ border-radius: 10px;
125
+ margin-bottom: 5px;
126
+ width: fit-content;
127
+ max-width: 80%;
128
+ }
129
+ .container {
130
+ display: flex;
131
+ flex-direction: column;
132
+ align-items: flex-start;
133
+ }
134
+ @media (max-width: 600px) {
135
+ .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
136
+ }
137
+ </style>
138
+ """, unsafe_allow_html=True)
139
+
140
+ # Chat History Display
141
+ st.markdown("<div class='container'>", unsafe_allow_html=True)
142
+ for message in st.session_state.chat_history:
143
+ if message["role"] == "user":
144
+ st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
145
+ else:
146
+ st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
147
+ st.markdown("</div>", unsafe_allow_html=True)
148
+
149
+ # --- Single Input Box for Both Initial and Follow-Up Messages ---
150
+ user_input = st.chat_input("Type your message here...") # Only ONE chat_input()
151
 
 
 
152
  if user_input:
153
+ response, follow_up, st.session_state.chat_history, image_url = get_response(
154
  system_message="You are a helpful AI assistant.",
155
  user_text=user_input,
156
+ chat_history=st.session_state.chat_history
 
157
  )
 
 
 
158
 
159
+ # Display HAL's response
160
+ st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
161
+
162
+ # Display NASA image if available
163
+ if image_url:
164
+ st.image(image_url, caption="NASA Image of the Day")
165
+
166
+ # Store follow-up question in session state
167
+ st.session_state.follow_up = follow_up
168
+ st.session_state.response_ready = True # Enables follow-up response cycle
169
+
170
+ # Display follow-up question inside chat if available
171
+ if st.session_state.response_ready and st.session_state.follow_up:
172
+ st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {st.session_state.follow_up}</div>", unsafe_allow_html=True)
173
+
174
+ # Reset response state so user can type next input
175
+ st.session_state.response_ready = False