CCockrum commited on
Commit
1fddcd6
·
verified ·
1 Parent(s): 290623e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -87
app.py CHANGED
@@ -1,17 +1,13 @@
1
  import os
2
- import requests
3
- import streamlit as st
4
  from langchain_huggingface import HuggingFaceEndpoint
 
5
  from langchain_core.prompts import PromptTemplate
6
  from langchain_core.output_parsers import StrOutputParser
7
- from transformers import pipeline # for Sentiment Analysis
8
  from config import NASA_API_KEY # Import the NASA API key from the configuration file
9
 
10
  model_id = "mistralai/Mistral-7B-Instruct-v0.3"
11
 
12
- # Initialize sentiment analysis pipeline
13
- sentiment_analyzer = pipeline("sentiment-analysis")
14
-
15
  def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
16
  llm = HuggingFaceEndpoint(
17
  repo_id=model_id,
@@ -33,51 +29,13 @@ def get_nasa_apod():
33
  else:
34
  return "I couldn't fetch data from NASA right now. Please try again later."
35
 
36
- def analyze_sentiment(user_text):
37
- """
38
- Analyzes the sentiment of the user's input to adjust responses.
39
- """
40
- result = sentiment_analyzer(user_text)[0]
41
- sentiment = result['label']
42
- return sentiment
43
-
44
- def predict_action(user_text):
45
- """
46
- Predicts actions based on user input (e.g., fetch space info or general knowledge).
47
- """
48
- if "NASA" in user_text or "space" in user_text:
49
- return "nasa_info"
50
- if "weather" in user_text:
51
- return "weather_info"
52
- return "general_query"
53
-
54
- def generate_follow_up(user_text):
55
- """
56
- Generates a relevant follow-up question based on the user's input.
57
- """
58
- prompt_text = (
59
- f"Given the user's message: '{user_text}', ask one natural follow-up question "
60
- "that suggests a related topic or offers user the opportunity to go in a new direction."
61
- )
62
-
63
- hf = get_llm_hf_inference(max_new_tokens=64, temperature=0.7)
64
- chat = hf.invoke(input=prompt_text)
65
-
66
- return chat.strip()
67
-
68
  def get_response(system_message, chat_history, user_text,
69
  eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}):
70
- sentiment = analyze_sentiment(user_text)
71
- action = predict_action(user_text)
72
-
73
- if action == "nasa_info":
74
  nasa_response = get_nasa_apod()
75
  chat_history.append({'role': 'user', 'content': user_text})
76
  chat_history.append({'role': 'assistant', 'content': nasa_response})
77
-
78
- follow_up = generate_follow_up(user_text)
79
- chat_history.append({'role': 'assistant', 'content': follow_up})
80
- return f"{nasa_response}\n\n{follow_up}", chat_history
81
 
82
  hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
83
 
@@ -95,15 +53,7 @@ def get_response(system_message, chat_history, user_text,
95
 
96
  chat_history.append({'role': 'user', 'content': user_text})
97
  chat_history.append({'role': 'assistant', 'content': response})
98
-
99
- # Modify response based on sentiment analysis (e.g., offer help for negative sentiments)
100
- if sentiment == "NEGATIVE":
101
- response += "\nI'm sorry to hear that. How can I assist you further?"
102
-
103
- follow_up = generate_follow_up(user_text)
104
- chat_history.append({'role': 'assistant', 'content': follow_up})
105
-
106
- return f"{response}\n\n{follow_up}", chat_history
107
 
108
  # Streamlit setup
109
  st.set_page_config(page_title="HuggingFace ChatBot", page_icon="🤗")
@@ -131,35 +81,3 @@ if user_input:
131
  for message in st.session_state.chat_history:
132
  st.chat_message(message["role"]).write(message["content"])
133
 
134
-
135
-
136
-
137
- if st.button("Send"):
138
- if user_input:
139
- response, follow_up, st.session_state.chat_history, image_url = get_response(
140
- system_message="You are a helpful AI assistant.",
141
- user_text=user_input,
142
- chat_history=st.session_state.chat_history
143
- )
144
-
145
- # Display response
146
- st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
147
-
148
- # Display NASA image if available
149
- if image_url:
150
- st.image(image_url, caption="NASA Image of the Day")
151
-
152
- # Follow-up question suggestions
153
- follow_up_options = [follow_up, "Explain differently", "Give me an example"]
154
- selected_option = st.radio("What would you like to do next?", follow_up_options)
155
-
156
- if st.button("Continue"):
157
- if selected_option:
158
- response, _, st.session_state.chat_history, _ = get_response(
159
- system_message="You are a helpful AI assistant.",
160
- user_text=selected_option,
161
- chat_history=st.session_state.chat_history
162
- )
163
- st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
164
-
165
-
 
1
  import os
 
 
2
  from langchain_huggingface import HuggingFaceEndpoint
3
+ import streamlit as st
4
  from langchain_core.prompts import PromptTemplate
5
  from langchain_core.output_parsers import StrOutputParser
6
+ import requests
7
  from config import NASA_API_KEY # Import the NASA API key from the configuration file
8
 
9
  model_id = "mistralai/Mistral-7B-Instruct-v0.3"
10
 
 
 
 
11
  def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
12
  llm = HuggingFaceEndpoint(
13
  repo_id=model_id,
 
29
  else:
30
  return "I couldn't fetch data from NASA right now. Please try again later."
31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  def get_response(system_message, chat_history, user_text,
33
  eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}):
34
+ if "NASA" in user_text or "space" in user_text:
 
 
 
35
  nasa_response = get_nasa_apod()
36
  chat_history.append({'role': 'user', 'content': user_text})
37
  chat_history.append({'role': 'assistant', 'content': nasa_response})
38
+ return nasa_response, chat_history
 
 
 
39
 
40
  hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
41
 
 
53
 
54
  chat_history.append({'role': 'user', 'content': user_text})
55
  chat_history.append({'role': 'assistant', 'content': response})
56
+ return response, chat_history
 
 
 
 
 
 
 
 
57
 
58
  # Streamlit setup
59
  st.set_page_config(page_title="HuggingFace ChatBot", page_icon="🤗")
 
81
  for message in st.session_state.chat_history:
82
  st.chat_message(message["role"]).write(message["content"])
83