Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,13 @@
|
|
1 |
import os
|
2 |
-
import requests
|
3 |
-
import streamlit as st
|
4 |
from langchain_huggingface import HuggingFaceEndpoint
|
|
|
5 |
from langchain_core.prompts import PromptTemplate
|
6 |
from langchain_core.output_parsers import StrOutputParser
|
7 |
-
|
8 |
from config import NASA_API_KEY # Import the NASA API key from the configuration file
|
9 |
|
10 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
11 |
|
12 |
-
# Initialize sentiment analysis pipeline
|
13 |
-
sentiment_analyzer = pipeline("sentiment-analysis")
|
14 |
-
|
15 |
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
|
16 |
llm = HuggingFaceEndpoint(
|
17 |
repo_id=model_id,
|
@@ -33,51 +29,13 @@ def get_nasa_apod():
|
|
33 |
else:
|
34 |
return "I couldn't fetch data from NASA right now. Please try again later."
|
35 |
|
36 |
-
def analyze_sentiment(user_text):
|
37 |
-
"""
|
38 |
-
Analyzes the sentiment of the user's input to adjust responses.
|
39 |
-
"""
|
40 |
-
result = sentiment_analyzer(user_text)[0]
|
41 |
-
sentiment = result['label']
|
42 |
-
return sentiment
|
43 |
-
|
44 |
-
def predict_action(user_text):
|
45 |
-
"""
|
46 |
-
Predicts actions based on user input (e.g., fetch space info or general knowledge).
|
47 |
-
"""
|
48 |
-
if "NASA" in user_text or "space" in user_text:
|
49 |
-
return "nasa_info"
|
50 |
-
if "weather" in user_text:
|
51 |
-
return "weather_info"
|
52 |
-
return "general_query"
|
53 |
-
|
54 |
-
def generate_follow_up(user_text):
|
55 |
-
"""
|
56 |
-
Generates a relevant follow-up question based on the user's input.
|
57 |
-
"""
|
58 |
-
prompt_text = (
|
59 |
-
f"Given the user's message: '{user_text}', ask one natural follow-up question "
|
60 |
-
"that suggests a related topic or offers user the opportunity to go in a new direction."
|
61 |
-
)
|
62 |
-
|
63 |
-
hf = get_llm_hf_inference(max_new_tokens=64, temperature=0.7)
|
64 |
-
chat = hf.invoke(input=prompt_text)
|
65 |
-
|
66 |
-
return chat.strip()
|
67 |
-
|
68 |
def get_response(system_message, chat_history, user_text,
|
69 |
eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}):
|
70 |
-
|
71 |
-
action = predict_action(user_text)
|
72 |
-
|
73 |
-
if action == "nasa_info":
|
74 |
nasa_response = get_nasa_apod()
|
75 |
chat_history.append({'role': 'user', 'content': user_text})
|
76 |
chat_history.append({'role': 'assistant', 'content': nasa_response})
|
77 |
-
|
78 |
-
follow_up = generate_follow_up(user_text)
|
79 |
-
chat_history.append({'role': 'assistant', 'content': follow_up})
|
80 |
-
return f"{nasa_response}\n\n{follow_up}", chat_history
|
81 |
|
82 |
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
|
83 |
|
@@ -95,15 +53,7 @@ def get_response(system_message, chat_history, user_text,
|
|
95 |
|
96 |
chat_history.append({'role': 'user', 'content': user_text})
|
97 |
chat_history.append({'role': 'assistant', 'content': response})
|
98 |
-
|
99 |
-
# Modify response based on sentiment analysis (e.g., offer help for negative sentiments)
|
100 |
-
if sentiment == "NEGATIVE":
|
101 |
-
response += "\nI'm sorry to hear that. How can I assist you further?"
|
102 |
-
|
103 |
-
follow_up = generate_follow_up(user_text)
|
104 |
-
chat_history.append({'role': 'assistant', 'content': follow_up})
|
105 |
-
|
106 |
-
return f"{response}\n\n{follow_up}", chat_history
|
107 |
|
108 |
# Streamlit setup
|
109 |
st.set_page_config(page_title="HuggingFace ChatBot", page_icon="🤗")
|
@@ -131,35 +81,3 @@ if user_input:
|
|
131 |
for message in st.session_state.chat_history:
|
132 |
st.chat_message(message["role"]).write(message["content"])
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
if st.button("Send"):
|
138 |
-
if user_input:
|
139 |
-
response, follow_up, st.session_state.chat_history, image_url = get_response(
|
140 |
-
system_message="You are a helpful AI assistant.",
|
141 |
-
user_text=user_input,
|
142 |
-
chat_history=st.session_state.chat_history
|
143 |
-
)
|
144 |
-
|
145 |
-
# Display response
|
146 |
-
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
|
147 |
-
|
148 |
-
# Display NASA image if available
|
149 |
-
if image_url:
|
150 |
-
st.image(image_url, caption="NASA Image of the Day")
|
151 |
-
|
152 |
-
# Follow-up question suggestions
|
153 |
-
follow_up_options = [follow_up, "Explain differently", "Give me an example"]
|
154 |
-
selected_option = st.radio("What would you like to do next?", follow_up_options)
|
155 |
-
|
156 |
-
if st.button("Continue"):
|
157 |
-
if selected_option:
|
158 |
-
response, _, st.session_state.chat_history, _ = get_response(
|
159 |
-
system_message="You are a helpful AI assistant.",
|
160 |
-
user_text=selected_option,
|
161 |
-
chat_history=st.session_state.chat_history
|
162 |
-
)
|
163 |
-
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
|
164 |
-
|
165 |
-
|
|
|
1 |
import os
|
|
|
|
|
2 |
from langchain_huggingface import HuggingFaceEndpoint
|
3 |
+
import streamlit as st
|
4 |
from langchain_core.prompts import PromptTemplate
|
5 |
from langchain_core.output_parsers import StrOutputParser
|
6 |
+
import requests
|
7 |
from config import NASA_API_KEY # Import the NASA API key from the configuration file
|
8 |
|
9 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
10 |
|
|
|
|
|
|
|
11 |
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
|
12 |
llm = HuggingFaceEndpoint(
|
13 |
repo_id=model_id,
|
|
|
29 |
else:
|
30 |
return "I couldn't fetch data from NASA right now. Please try again later."
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def get_response(system_message, chat_history, user_text,
|
33 |
eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}):
|
34 |
+
if "NASA" in user_text or "space" in user_text:
|
|
|
|
|
|
|
35 |
nasa_response = get_nasa_apod()
|
36 |
chat_history.append({'role': 'user', 'content': user_text})
|
37 |
chat_history.append({'role': 'assistant', 'content': nasa_response})
|
38 |
+
return nasa_response, chat_history
|
|
|
|
|
|
|
39 |
|
40 |
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
|
41 |
|
|
|
53 |
|
54 |
chat_history.append({'role': 'user', 'content': user_text})
|
55 |
chat_history.append({'role': 'assistant', 'content': response})
|
56 |
+
return response, chat_history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
# Streamlit setup
|
59 |
st.set_page_config(page_title="HuggingFace ChatBot", page_icon="🤗")
|
|
|
81 |
for message in st.session_state.chat_history:
|
82 |
st.chat_message(message["role"]).write(message["content"])
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|