NASA-AI-Chatbot / app.py
CCockrum's picture
Update app.py
6876886 verified
raw
history blame
8.21 kB
import os
import re
import random
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
from langdetect import detect # Ensure this package is installed
# βœ… Environment Variables
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.")
NASA_API_KEY = os.getenv("NASA_API_KEY")
if NASA_API_KEY is None:
raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.")
# βœ… Set Up Streamlit
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")
# βœ… Ensure Session State Variables
if "chat_history" not in st.session_state:
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
if "response_ready" not in st.session_state:
st.session_state.response_ready = False
if "follow_up" not in st.session_state:
st.session_state.follow_up = ""
# βœ… Model Configuration
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
# βœ… Initialize Hugging Face Model
def get_llm_hf_inference(model_id=model_id, max_new_tokens=1024, temperature=0.7):
return HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token=HF_TOKEN,
task="text-generation"
)
# βœ… NASA API Function
def get_nasa_apod():
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now."
# βœ… Sentiment Analysis
sentiment_analyzer = pipeline(
"sentiment-analysis",
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english"
)
def analyze_sentiment(user_text):
result = sentiment_analyzer(user_text)[0]
return result['label']
# βœ… Intent Detection
def predict_action(user_text):
if "NASA" in user_text or "space" in user_text:
return "nasa_info"
return "general_query"
# βœ… Follow-Up Question Generation
def generate_follow_up(user_text):
prompt_text = f"Based on: '{user_text}', generate a concise, friendly follow-up."
hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
output = hf.invoke(input=prompt_text).strip()
return output if output else "Would you like to explore this topic further?"
# βœ… Ensure English Responses
def ensure_english(text):
try:
detected_lang = detect(text)
if detected_lang != "en":
return "⚠️ Sorry, I only respond in English. Can you rephrase your question?"
except:
return "⚠️ Language detection failed. Please ask your question again."
return text
# βœ… Ensure Every Response Has a Follow-Up Question
def generate_follow_up(user_text):
"""Generates a follow-up question to guide the user toward related topics or next steps."""
prompt_text = (
f"Given the user's question: '{user_text}', generate a SHORT follow-up question "
"suggesting either a related topic or asking if they need further help. "
"Example: 'Would you like to explore quantum superposition or ask about another physics concept?' "
"Keep it concise and engaging."
)
hf = get_llm_hf_inference(max_new_tokens=40, temperature=0.8)
output = hf.invoke(input=prompt_text).strip()
# Fallback in case of an empty response
return output if output else "Would you like to explore another related topic or ask about something else?"
# βœ… Main Response Function
def get_response(system_message, chat_history, user_text, max_new_tokens=512):
action = predict_action(user_text) # πŸ”₯ Fix: Define 'action'
# βœ… Handle NASA-Specific Queries
if action == "nasa_info":
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
response = f"**{nasa_title}**\n\n{nasa_explanation}"
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, nasa_url
# βœ… Set Up LLM Request
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
# βœ… Format Chat History
filtered_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history)
# βœ… Prompt Engineering
prompt = PromptTemplate.from_template(
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
"User: {user_text}.\n [/INST]\n"
"AI: Provide a detailed explanation with depth. "
"Use a conversational style, starting with 'Certainly!', 'Of course!', or 'Great question!'."
"🚨 Answer **only in English**."
"\nHAL:"
)
# βœ… Invoke LLM Model
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip()
# βœ… Ensure English
response = ensure_english(response)
# βœ… Fallback Response
if not response:
response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?"
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, None
# βœ… Streamlit UI
st.title("πŸš€ HAL - NASA AI Assistant")
# βœ… Justify all chatbot responses
st.markdown("""
<style>
.user-msg {
background-color: #696969;
color: white;
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
text-align: justify; /* βœ… Justify text */
}
.assistant-msg {
background-color: #333333;
color: white;
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
text-align: justify; /* βœ… Justify text */
}
.container {
display: flex;
flex-direction: column;
align-items: flex-start;
}
@media (max-width: 600px) {
.user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
}
</style>
""", unsafe_allow_html=True)
# βœ… Reset Chat Button
if st.sidebar.button("Reset Chat"):
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
st.session_state.response_ready = False
st.session_state.follow_up = ""
# βœ… Chat UI
user_input = st.chat_input("Type your message here...")
if user_input:
# βœ… Ensure get_response() returns a response
response, follow_up, st.session_state.chat_history, image_url = get_response(
system_message="You are a helpful AI assistant.",
user_text=user_input,
chat_history=st.session_state.chat_history
)
# βœ… Ensure response is not empty before calling st.markdown()
if response:
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
if image_url:
st.image(image_url, caption="NASA Image of the Day")
st.session_state.follow_up = follow_up
st.session_state.response_ready = True
# βœ… Check before displaying follow-up message
if st.session_state.response_ready and st.session_state.follow_up:
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {st.session_state.follow_up}</div>", unsafe_allow_html=True)
st.session_state.response_ready = False